
ASD-TDR-63-554 
&/(r^f 

00 

COPY     1 PF ■^. 

?  

HARD "Mi $. ?. €L V 

MICROFICHE $■ z. DO 

10 

<D 

VOLUME I 

SUMMARY OF LAMINAR BOUNDARY 

LAYER CONTROL RESEARCH 

TECHNICAL DOCUMENTARY REPORT ASD-TDR-63-554 

DDC 

DDCIRA   B 

Prepared under Contract No. AF33(616)-7564 
by Northrop Noroir, A Division of 

Northrop Corporation, MowtKorne, Califor-iia 
Author:   Boundary Layer Research Section 



·•· 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLYe 



> 
ASÜ-TDR-63-55A 

SUMMARY       OF       LAMINAR      BOUNDARY 

LAYER      CONTROL       RESEARCH 

TECHNICAL DOCUMENTARY REPORT ASD-TDR-63-554 

March 1964 

Air Force Flight Dynamics Laboratory 
Aeronautical Systems Division 

Air Force Systems Command 
Wright-Patterson Air Force Base, Ohio 

Project Ho. 1366, Task No. 136612 

Prepared under Contract No. AF33(6l6)-7564 
by Northrop Norair, A Division of 

Northrop Corporation, Hawthorne, California 
Author:  Boundary Layer Research Section 



NOTICES 

When Government drawings, specifications, or other data are used for any 
purpose other than in connection with a definitely related Government procure- 
ment operation, the United States Government thereby incurs no responsibility 
nor any obligation whatsoever; and the fact that the Government may have 
formulated, furnished, or in any way supplied the said drawings, specifications, 
or other data, is not to be regarded by implication or otherwise as in any 
manner licensing the holder or any other person or corporation, or conveying 
any rights or permission to manufacture, use, or sell any patented invention 
that may in any way be related thereto. 

Qualified   requesters   may  obtain  copies   of  this   report   from the Armed 
Services    Technical    Information   Agency,   (ASTIA),   Arlington  Hall  Station, 
Arlington 12, Virginia. 

This report has been released to the Office of Technical Services, U.S. 
Department of Commerce, Washington 25, D.C., in stock quantities for sale 
to the general public. 

Copies of this report should not be returned to the Aeronautical Systems 
Division unless return is required by security considerations, contractual 
obligations, or notice on a specific document. 



f 
FOREWORD 

This report was prepared by the Boundary Layer Research Section 
under the direction of Dr. Werner Pfenninger, Northrop Norair, a 
Division of Northrop Corporation, Hawthorne, California, and covers 
research investigations performed from July 1959 through March 1963 
under Contract AF33(6l6)-7564. This work was performed under Air 
Force Task No. 136612 of Project No. 1366, "Laminar Boundary Layer 
Control Research.** 

The work was administered under the direction of the Flight Dynamics 
Laboratory, Aeronautical Systems Division, Mr. Philip P. Antonatos and 
Mr. J. P. Nenni were project engineers for the Laboratory. 
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This abstract is unclassified 

ABSTRACT 

At subsonic speeds, full length laminar flow and low drags were 
obtained up to high length Reynolds numbers on a thin straight, on a 
swept laminar suction wing and on a suction body of revolution. Mod- 
erately increased suction rates in the most critical region of a 
straight and a swept laminar suction wing enabled full chord laminar 
flow in th^ presence of external sound.  Theoretical investigations 
are concerned with nonlinear boundary layer oscillations and stability 
investigations (assuming small disturbances) of a supersonic laminar 
boundary layer on a flat plate up to high supersonic speeds as well as 
on a highly swept supersonic low drag suction wing of low wave drag. 
On a supersonic flat laminar suction plate with and without weak inci- 
dent shock wavef, extensive laminar flow and low equivalent drags were 
obtained at M = 3 up to length Reynolds numbers of 26 X HP.  Further 
supersonic low drag suction experiments on a suction body of revolution, 
on a 36f ^ufsersonic yawing wing, as well as on a 72tf supersonic yawing 

! wing (swept behind the Mach cone) of low wave drag, a^e described./ The 
latter wing showed full chord laminar flow with a subsonic type pressure 
distribution at M = 2 and RJ-ä** IS?.''^""^ 

This report has been reviewed and is approved. \ 
\ 

alo^r 
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SUMMARY 

SECTION I--THEORETICAL INVESTIGATIONS 

Chapter A of the theoretical investigations deals with the growth 
of boundary layer oscillations and the phenomena leading to transition, using 
the full nonlinear boundary layer disturbance equations. A theory is  developed 
around the concept that, under certain frequent conditions and as a result of 
the nonlinearity of the equations, two partial oscillations of the whole motion 
can drive a third partial oscillation in a resonance-like manner to a large 
amplitude (Section I, Chapter A and Reference 1). The two driving oscillations 
can come from external disturbances--such as a roughness of the wall surface 
and a fluctuation of the erternal flow--or from the internal disturbance 
motions generated by preceding resonance-like interactions. For example, the 
following combinations of driving oscillations can produce significant ampli- 
fications:  (1) an oscillation from surface roughness or surface vibration 
and an oscillation from external turbulence or sound, (2) either of these os- 
cillations and an internal boundary layer oscillation, or (3) two internal 
boundary layer oscillations. 

In deducing the theory, the whole motion is decomposed into a 
sequence of perturbations from a laminar flow, and then each perturbation is 
decomposed into a spectrum of Fourier components. The first perturbation is 
determined solely by the boundary irregularities at the wall surface and in 
the external flow, whereas each higher perturbation is determined mainly by 
the driving oscillations from the lower perturbations. Expressions for the 
resonance-like growth of the Fourier coefficients are derived, proceeding in 
a recursive manner from lower to higher perturbations.  The role of these 
growths in producing transition phenomena is explained. Some aspects of the 
calculation techniques required to apply tne theory also are discussed. 

Chapter B of the theoretical investigations discusses calculations 
and resulcs of the stability limit Reynolds number of the boundary layer on 
an insulated flat plate up to M = 5.8 (also see Reference 2). The cases of 
constant stagnation temperature at various Mach numbers, corresponding es- 
sentially to wind tunnel conditions, and of constant static temperature at 
different Mach numbers, corresponding to flight conditions, have been analyzed. 
The full linearized stability equations of the compressible laminar boun^ry 
layer, as derived by Lees and Lin, have been integrated numerically from the 
wall to the outer edge of the boundary layer.  The wave number a, wave velocity 
Cr and boundary layer Reynolds number have been chosen such that the 

MinnerM 

solution of the disturbance equation, as obtained from the integration through 
the boundary layer, is matched at the outer edge of the boundary layer with 
the "outer" solution beyond the outer edge of the boundary layer. 

With increasing Mach number the stability limit Reynolds number of 
an insulated flat plate ot zero pressure gradient first decreases slightly up 
to M 5: 1 and rises again at supersonic speeds.  For the case of constant static 
temperature, i.e., for flight conditions, the stability limit Reynolds number 
rises rapidly at higher Mach numbers. The corresponding rise of the stability 
limit Reynolds number of the compressible laminar boundary layer OP an insulated 
flat plate at higher Mach numbers is considerably smaller for the case of con- 
stant stagnation temperaturo, corresponding essentially to wind tunnel conditions 
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SUMMARY (continued) 

This difference is due to the variation of the properties of the air (viscosity, 
etc.) with temperature, which changes tne boundary layer profile and the 
stability limit Reynolds number. 

In view of *"h? increased stability limit Reynolds numbers at super- 
sonic speeds, it should basically be easier to maintain laminar flow at further 
increased length Reynolds numbers, as compared with the incompressible case, 
at least as long as interacting shock waves or boundary layer crossflow insta- 
bility are not critical. 

Boundary layer crossflow instability becomes particularly critical 
on highly swept supersonic laminar suction wings with subsonic type flow of 
low wave drag. At supersonic speeds the increased wall temperature causes a 
thicker laminar boundary layer with reduced kinetic energy close to the sur- 
face, resulting in a correspondingly stronger crossflow at supersonic speeds, 
ander otherwise the same conditions. The crossflow stability limit Reynolds 
number of a supersonic laminar boundary layer on a 63° swept wing has been 
calculated in Section I, Chapter C at M = 1.8 for the insulated wing and for 
the case of radiation cooling (also see Reference 3). The simplified Dunn and 
Lin stability equations for compressible flow were used. The calculations were 
repeated later with the complete Lees and Lin compressible stability equations. 

For the ssrae shape of the boundary layer crossflow profile the 
crossflow stability limit Reynolds number was slightly larger at M = 1.8, as 
compared with incompressible flow. At M = 1.8 the Dunn-Lin equations gave 
results which -iosely agreed with those obtained from the more complete Lees- 
Lin equations. 

The main effert of compressibility on boundary layer crossflow at 
supersonic speeds, such ..s in the case of highly swept supersonic low drag 
suction wings, is thus essentially a stronger crossflow caused by the thicker 
boundary layer at supersonic speeds due to the increased temperatures close to 
the surface. In contrast, the crossflow stability limit Reynolds number, at 
least at moderately high Mach numbers, is ]ittle affected by compressibility. 
Increased suction mass flow rates are required to avolH excessive boundary layer 
crossflow and thus to maintain laminar flow on supersonic swept wings, as com- 
pared with the case of incompressible flow. 

Stuart (NPL) has shown (Reference 4) that the two disturbance equa- 
tions of the laminar boundary layer in the direction tangential and normal to 
the potential flow streamline in tbe presence of boundary layer crossflow can 
be approximated by a single disturbance equation in the direction of the most 
critical disturbance wave fronts. These most critical disturbance waves are 
usually oriented at a small angle to the direction of the local potential flow. 
The question then arises concerning the angle between the most critical cross- 
flow disturbance waves and the local potential flow and the variation of the 
crossflow stability limit Reynolds number with this angle. Chapter D of 
Section I \,also Reference 5) presents results of crossflow stability calcula- 
tions when the angle between the boundary layer disturbance waves and the 
potential flow direction is varied. A boundary layer crossflow profile in the 
rear part of a swept laminar suction wing was investigated.  The disturbance 
equation for the resultant boundary layer flow in the direction normal to the 
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SUMMARY (continued) 

disturbance wave fronts was integrated as in References 6 and 7, The lowest 
stability limit Reynolds number for the above-mentioned crossflow profile 
close to the trailing edge of a swept wing was obtained when the disturbance 
vortices were aligned nearly parallel to the direction of the local potential 
flow. The corresponding wave velocity Cr was finite, indicating the exist- 
ence of traveling crossflow disturbance vortices in the rear part of a swept 
laminar suction wing. For other angles between the disturbance wave fronts 
and the potential flow direction, the stability limit Reynolds number in- 
creased rather rapidly. 

SECTION II PART 1--EXPERIMENTAL AERODYNAMIC INVESTIGATIONS AT SUBSONIC SPEEDS 

A. Investigation of Swept Laminar Suction Wing 

In view of the advantages of swept wings at high subsonic 
speeds, particular emphasis was given to the investigation of swept laminar 
suction wings. Section II, Part 1, Chapter A describes the experimental 
investigation of a 30° yawing, 12-percent-thick, symmetrical laminar suction 
wing of 7-foot chord and 7-foot span in the Ames 12-foot high-pressure tunnel 
(References 8, 9 and 10). Suction was appli " through 93 fine slots located 
from 0.5-percent chord to 97-percent chord. In order to maintain fully 
developed spanwise flow in the test region of the model, auxiliary suction 
slots and chambers were added on both sides of the test area. Two-dimensional 
flow was maintained by shaping the endplates on both sides of the model according 
to the undisturbed streamlines around an infinitely long yawing wing of the 
same cross section and sweep working in infinite flow. 

In the angle of attack range between a = -1 to +1° full chord 
laminar flow was maintained at five atmospheres tunnel pressure up to a wing 
chord Reynolds number Re = 28 x 106 to 29 x 10°. The minimum total equivalent 
wing profile drag for both wing sides at a = 1° was CD   = 0.00097 at 

/- ^in 
Rc = 28 x 10 , with a corresponding suction quantity coefficient CQ t 

= O'000^0' 

At Reynolds numbers above Rc = 28 x 10" tunnel noise, rather than tunnel turbu- 
lence, seemed to contribute to the formation of turbulent bursts and a rising 
drag at a1 s between +1°. At ö - "»-US and -1.5° full chord laminar flow was 
maintained up to Rc = 22 x 10° and 24 x 10

6, respectively, and up to 21 x 106 

at cr = -2°. At the larger negative angles of attack the increased flow accel- 
eration in the front part of the wing caused an increased boundary layer cross- 
flow in this area, resulting in premature transition at higher Reynolds numbers. 
At a =  1.5° the occurrence of negative pressure peaks close to the leading edge 
followed by decelerated flow caused increased instability of the chordwise 
component of the boundary layer flow, resulting in premature transition at 
somewhat lower Reynolds numbers than at a = +1 to -1°. 

At higher wing chord Reynolds numbers the chordwise suction 
distributions at a  - +1 to -1° for minimum drag showed relatively high suction 
rates in the leading edge area, followed by weak suction in the region of the 
flat pressure distribution and relatively strong suction in tne region of the 
rear pressure rise. An analysis of the boundary layer development in these 
cases (Section II, Part 1, Chapter A and References 9, 10 and 11) showed that 
the crossflow stability lirrit Reynolds number for the raos*: critical disturbances 
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SWtaUK (continued) 

could be exceeded by approximately 80 percent at a = 0° in the region from 
the leading edge to the beginning of the rear pressure rise. Mt or s +1 and 
-1° angles of attack and full chord laminar flov the crossflow stability 
limit Reynolds number at the downstream end of the area of the flat pressure 
distribution could be exceeded by approximately 30 percent and over 100 per- 
cent, respectively. In other words, when the chordwise boundary layer flow 
is less stable against Xollmien-Schlichting type of disturbances In the 
presence of decelerated chordwise flow, velocity fluctuations in the cross- 
tlow boundary layer appear to be amplified at a faster rate. Vice versa, 
when the chordwise flow is r.trongly accelerated and thus highly stable 
against Tollmien-Schlichting oscillations, the crossflow stability limit 
Reynolds number can be exceeded by a larger factor without causing premature 
transition. It thus appears that the growth of the disturbances in the cross- 
flow component of the boundary layer is influenced by the growth of the chord- 
wise boundary layer oscillations. 

Toward the downstream end of the region of tne rear pressure 
rise, where the chordwise component of the boundary layer flow is generally 
highly stable, the crossflow stability limit Reynolds number could be exceeded 
by over 100 percent without transition in the angle ot attack range between +1°. 
In local areas, such as in the region of the leading edge at a =  -1° or in the 
ncnsuction region between 97 percent and 100 percent chord, the crossflow sta- 
bility limit could be exceeded locally by considerably larger factors. 

Witn the explication of low drag suction to high subsonic 
speed jet-propelled airplanes the question arises concerning the influence of 
external sound, originating from the jet exhaust and the rotating components 
cf the propulsion system, on the behavior of a swept laminar suction wing. 
In order to answer this question, low drag suction experiments were conducted 
in the Norair 7- by 10-foot low-turbulence tunnel on the above-described 30° 
swept low drag suction wing in the presence of longitudinal and transverse 
external sound of discrete frequencies as well as with a continuous spectrum. 
These investigations are described in Section II, Part 1, Chapter C and in 
Reference 12, Transition was caused by external sound and originated usually 
in the region of the flat pressure distribution. With the wing in smooth con- 
dition, i.e., with surface cavities such as static pressure orifices sealed, 
and with optimum suction for minirum drag in the absence of external sound, 
transition started at 120 to 126 db external sound pressure at wing chord 
Reynolds numbers between 8 x 10" to 12 x 10 .* At R = 10^ the corresponding 
critical ratio of mean sound particle velocity u* to undisturbed velocity U^ 
was u'/l'so a 1.5 x lO"-*, For the smooth wing the critical sound particle velo- 
city ratio decreased at a somewhat alower rate than Inversely proportional to 
the wing chord Reynolds number. Transition could be delayed to higher sound 
pressures by raising suction as a whole or locally in the area of the flat 
pressure distribution, where transition otherwise occurred. For example, at 
Rc = 10', the criticcl sound pressure could be raised to over 132 db, corre- 
sponding to (u,/Uao)crit = 3 x 10"3 to 3.5 x 10"3, by increasing suction locally 

*The turbulence level of the Norair 7- by 10-foot tunnel enabled full chord 
3£        laminar flow on this swept wing up to Rc = 13 x 10

6 without external sound. 

ASD-TDR-63-554 -vii- 



SUMMARY (continued) 

in the region of the fiat pressure distribution by 15 percent. The corresponding 
increase in equivalent wing profile drag was only 5 percent of the minimum 
profile drag. Raising suction as a whole required much larger increases in 
total suction quantity to prevent transition at higher sound pressures. 

On the swept low drag suction wing transition was usually 
observed over a wide range of sound frequencies, and the variation of the 
critical sound pressure for transition with frequency was relatively small for 
the smooth wing.  In the presence of open surface cavities such as nonsucking 
open or imperfec'ily sealed slots and open static pressure orifices the critical 
sound pressure at transition was reduced considerably to values as low as 110 
db at higher sound frequencies within the frequency range for amplified Toll- 
mien- Schlichting oscillations in the region of the open surface cavity in the 
front part of the wing. 

According to naphthalene sublimation pictures, transition in the 
region of the flat pressure distribution in the presence of external sound was 
usually preceded by closely spaced chordwise striations, indicating the forma- 
tion of chordwise disturbance vortices in the presence of external sound.  (With- 
out sound no striations were observed in the test Reynolds number range.) Appar- 
ently, in the presence of external sound, disturbance velocities are induced in 
the crossflow boundary layer by amplified boundary layer oscillations in other 
directions. These disturbance velocities are large compared with the maximum 
crossflow velocity. Due to the presence of the nonlinear terms in the stability 
equations, when the disturbance velocities are relatively large the crossflow 
stability limit Reynolds number is lower than the linearized stability theory 
would predict, and chordwise disturbance vortices are then generated in the 
presence of strong sound fields. With external sound hot wire measurements in 
the region of the flat pressure distribution indeed showed amplified boundary 
layer oscillations sufficiently strong to appreciably reduce the crossflow 
stability limit Reynolds number. 

Bo  Investigation of a Straight Laminar Suction Wing 

In contrast to a swept laminar suction wing, where the non- 
linear theory of the stability of the laminar boundary layer had to be used to 
understand transition in the presence of external sound, transition on a straight 
laminar suction wing could be correlated to a certain extent with the linearized 
boundary layer stability theory. Section II, Part 1, Chapter C and Reference 13 
describe the experimental investigation of a 4-percent-thick straight symmetri- 
cal laminar suction wing of 17-foot chord at a = 0° in the Norair 7- oy 10-foot 
low turbulence tunnel. Various disturbances such as external and internal 
sound, standing sound waves in the suction ducts, aad mechanical vibrations of 
the external wing surface were superimposed.  Suction v.n  applied -»ver the whole 
wing chord through a large number of fine slots. l>_viously, the same wing had 
been tested without sound in the Norair 7- by 10-foot tunnel with various chord- 
wise pressure dirtributions induced by inserts in the tunnel wall (Section II, 
Part 1, Chapter B and Reference 14). Full chord laminar flow up to Re = 26 x 106 

and 23 x 10^ was maintained without inserts and with decelerated flow induced by 
inserts, respectively. 

The investigation of this straight low drag suction wing in the 
presence of sound and surface vibration was conducted without tunnel wall in- 
serts.  Transition was caused by external sound, surface vibrations, and internal 
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noise in the suction ducts. These disturbances were particularly critical 
when their frequencies correlated with the frequencies fcr amplified chord- 
wise boundary layer oscillations. With optimum suction (CQ « l.l X 10*4) 
for mlnlnuB drag in the absence of these disturbances the critical external 
sounH pressure for transition at Rg s 20 x 10° was as low as 108 db, corre- 
sponding to a critical sound particle velocity ratio u'/U«,* 2.5 x 10'^. 
Transition due to external and internal sound and surface vibration could 
be delayed to Increased disturbance levels by raising the suction quantities 
primarily In the most critical .irea, where the disturbance frequencies corre- 
lated with the frequencies for amplified chordwise boundary layer oscillations. 
Raising CQ from l.l x lO"4 (for one wing surface) to 1.8 x lO-2» at Re = 20 x 106 

increased the critical external sound pressure for transition to over 130 db, 
corresponding to a critical sound particle velocity ratio U'/UQ, -  2.7 x 10'3. 
Relatively small increases in suction rapidly raised the stability limit 
Reynolds number of the chordwise boundary layer flow and were thus highly 
effective in raising the critical sound pressure level for transition to 
much higher values. 

With internal noise of certain discrete frequencies, origi- 
nating from the suction compressor, standing sound waves of high intensity can 
develop along the suction duct.  In this case transition at the higher in- 
ternal sound pressures (> 140 db at the peak of the standing sound waves) 
originated from the location of the suction holes underneath the suction slots 
in the form of turbulent wedges. The latter did not develop when the suction 
holes and the corresponding slot were sufficiently displaced in chordwise 
direction. 

Internal sound in tne suction duct was generally similarly 
critical with respect to transition as external sound. When external and 
internal sound were equally strong, the combination of both sound sources 
required a reduction of approximately three db of both sound sources to avoid 
transition. When internal sound was not critical, the critical sound pressure 
of the external Found was not measurably influenced by the presence of the 
weaker internal sound field, end vice versa. 

C.  Investigation of Low Drag Suction Body of Revolution 

With the drastic reduction of the friction drag on wings by 
means of boundary layer suction the parasite drag of the nonlaminarized turbu- 
lent fuselage, etc., becomes increasingly important. The question therefore 
arises as to the basic feasibility ot full length laminar flow on three- 
dimensional bodies at high length Reynolds numbers by means of boundary layer 
suction.  In order to partially answer thi,9 question, low drag suction experi- 
ments were conducted on a 12-foot long modified Sears-Kaack body of revolution 
of fineness ratio 9 on which low drag boundery layer suction through 120 fine 
slots was applied (Section II, Part 1, Chapter D-a and Reference 15).  In the 
Norair 7- by 10-foot low-turbulence tunnel full length laminar flow was main- 
tained at a = 0° angle of attack up to RL 3= 20 x 10° length Reynolds number, 
with a minimum equivalent total drag coefficient CQ = 0.00038 (based on body 
wetted area). Tunnel turbulence and noise caused turbulent bursts and strongly 
increasing drag above RL = 20 x 10^. 
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SUMMARY (continued) 

Practically full length laminar flow over most of the body 
wetted area was obtained at angles of attack up to 5° at length Reynolds 
numoers of 15 x 106 to 18 x 10°. 

At further reduced turbulence levels, such as In the atmosphere 
in flight, considerably higher length Reynolds numbers with full length laminar 
flow should be feasible. 

An analysis of the experimental data (Section II, Part 1, 
Chapter D-b) at a - 09  angle of attack snowed e  satisfactory agreeu >nt 
between the ex leriraentally observed and i-he computed boundary layer profiles 
at the end of the body, at least on both sides and the bottom. The top rake 
at the end r(  the body often showed a transitional boundary layer profile with 
a somewhat larger momentum loss than the bcttom and side rakes. 

SECTION II PART 2—EXPERIMENTAL AERODYNAMIC INVESTIGATIONS AT SUPERSONIC SPEEDS 

A. Investigation of Flat Plates with Suction with and without 
Incident Shock Waves 

The theoretical investigations of the stability of the laminar 
boundary layer on a flat plate have shown a rapidly increasing stability 
limit Reynolds number at higher supersonic speeds.  It should, therefore, be 
possible to maintain laminar flow by means of suction up to higher length 
Reynolds numbers than at subsonic speeds, as long as boundary layer crossflow 
is not critical-  In order to verify this theoretical expectation, low drag 
suction experiments were conducted in the Tullahoma supersonic Tunnel A on a 
laminar flat suction plate, at a = 0°, with suction applied along the entire 
length of the plate through 76 slots (Section II, Part 2, Chapter A-a and 
Reference 16).  The suction air was collected in eight suction chambers. At 
M = 3 full length laminar flow was maintained up to RL = 26.4 x 10° plate length 
Reynolds number, with a corresponding equivalent total drag and suction weight 
flow coefficient Cp = 4.50 x 10"^ (including the equivalent suction drag) and 

Cy = 2.10 x 10'H,   respectively. For comparison, the flat plate transition 
length Reynolds number in the same tunnel is 4.0 to 4.5 x 10^ at M = 3. At 
M = 3.5 full length laminar flow was maintained up to R^ = 21.4 x 10^, and the 
corresponding total drag and suction weight flow coefficients were CDt = 5.65 
x 10"^ and Cy = 2.77 x 10"^, respectively. The maximum length Reynolds numbers 
with full chord laminar flow were limited by the maximum available tunnel pres- 
sure both at M = 3 and 3.5. At M = 3 and RL = 26.4 x 10

6 the estimated ratio 
of mean particle velocity induced by the sound from tne turbulent boundary layer 
of the wind tunnel test section to the undisturbed velocity is u'/U» a; 1.5 to 
2.0 x lO"-*.  It is remarkable that laminar flow could be maintained up to these 
Reynolds numbers in the presence of the intense sound field in the test section 
of the tunnel.  Thus, the experiments have verified the theoretical expectation 
that laminar flow by means of suction should be feasible at supersonic speeds 
up to quite high length Reynolds numbers, at least as long as boundary layer 
crossflow is not critical. 

Weak incident shock waves at supersonic speeds may interact with 
the boundary layer of laminarized areas.  The question then arises concerning 
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SUWARY (continued) 

the feasibility of laminar flow in and downstream of regions of intersections 
with weak incident shock waves and, in particular, about the effectiveness 
ot local boundary layer suction in the region of the shock' intersection in 
raising the shock strength with laminar flow. In order to answer these ques- 
tions, boundary layer suction experiments were conducted by the Northrop 
Horair Boundary Layer Research Section and I. Greber (MIT) on a flat plate 
(designed and built by the Northrop Norair Boundary Layer Research Section) 
at M « 2.0 in the supersonic tunnel of the MIT Gas Turbine Laboratory (Refer- 
ences 18 and 19). An Incident shock was generated by an inclined flat plate. 
This shock intersected the test plate along a straight line in spanwise dire- 
tion.  Suction was applied in and downstream of the shock Intersection region 
plate leading edge to the shock intersection position varied from 500,000 to 
800,000; the total plate length Reynolds number was approximately twice as 
large. 

The following results were obtained. At a length Reynolds 
number of 500,000 (based on length from the plate leading edge to the shock 
intersection) separation started at a shock strength (pressure ratio across 
shock in intersection region) of 1.20 without suction, as compared with a value 
of 1.62 with suction (CQ was 0.0011, based on the area covered by the slots). 
Full length laminar flow to the plate trailing edge was observed with slightly 
stronger shocks. The Schlieren pictures showed a much thinner layer of 
separated flow with suction applied in the intersection region, as compared 
with the case without suction. As long as suction was effective in maintaining 
tull length laminar flow on the plate, the pressure rise in the shock intersec- 
tion region w^s steep but continuous and smooth, in contrast to the pressure 
rise without suction, which generally showed a flat pressure plateau in the 
separated region upstream of transition in the shock intersection area. 

At higher length Reynolds numbers the critical shock strength 
with full length lacinar flow decreased. For example, at a length Reynolds 
number of 800,000 (based on the plate length to the shock intersection or 
1.6 x 10 , based on total plate length) the critical shock strength with suc- 
tion was 1.45. 

In many cases oblique shock waves generated by three dimensional 
bodies may intersect the laminarized surfaces of a supersonic low drag suction 
airplane. The intersection of the shock with the laminarized surface is then 
a straight line under an oblique angle to the main flow. The question then 
arises concerning the maintenance of laminar flow by means of boundary layer 
suction on surfaces which are intersected by oblique weak incident shock waves. 
In order to answer this question, an inclined flat plate mounted normal to the 
aoove-described supersonic suctxon plate was used in Tullahoma Tunnel A to gen- 
erate a weak shock which intersected the test area of the plate at the shock 
angle (Section II, Part 2, Chapter A-b and Reference 17). The test surface and 
the suction system were the same fts during the previous plate experiments in 
the supersonic Tullahoma Tunnel A. 

At M = 3 full length laminar flow was maintained on the suction 
plate up to the test limit of Tullahoma Tunnel A, corresponding to RL = 26.4 x 10° 
plate length Reynolds number, at shock pressure ratios of 1.10. The corresponding 
values for equivalent total drag and suction weight flow coefficient at M = 3 
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SUMMARY (continued) 

and RL = 26.4 x 10
6 were CD = 0.00050 and Cy = 0.00027, respectively. At 

lower plate length Reynolds nuicbers the shock pressure ratio for full length 
laminar flow on the plate increased; at M = 3 and RL = 11 x 10

6 laminar flow 
was maintained at shock pressure ratios up to 1.17. 

Tnese results are promising insofar as they basically prove 
the feasibility of laminar flow through and downstream of regions of inter- 
sections of incident shock waves at supersonic speeds by means of boundary 
layer suction. 

B. Investigations of a Supersonic Ogive Cylinder 

In addition to supersonic low drag suction experiments on a 
fiat plate and supersonic wings, an ogive of revolution with a cylindrical 
afterbody was tested in the 12- by 12-inch E-l blowdown tunnel in Tullahoma 
(Section II, Part 2, Chapter B and Reference 20). Low drag boundary layer 
suction was applied through 29 suction slots connected to four individual 
suction chambers.  (The small size of the model did not easily permit the in- 
stallation of a larger number of slots.) Full length laminar flow at M = 2,5 
and 3 was mai'-tained up to a length Reynolds number of 16 x 10" and 12 x 10°, 
respectively. The corresponding values for the equivalent total drag and 
suction weight flow coefficient (based on body wetted area) were at: 

M     RLx IP'
6     CDt x 10

4     CWt x 10
4 

2.5      15 5.1 2.0 
3.0      12 6.1 1.8 

The wave drag is not included in these drag figures. At higher Reynolds numbers 
tunnel noise, primarily from the blowdown valve, caused turbulent bursts and 
a rapidly rising drag with Reynolds number. 

C. Investigations of Swept Wings with Supersonic Leading Edges 

Ths supersonic laminar flow suction experiments discussed thus 
far were concerned with two-dimensional boundary layers flowing in the direction 
of the undisturbed stream. The next item to be investigated was the effect of 
boundary layer crossflow at supersonic speeds. Since two different types of 
potential flow fields exist on swept wings, depending on whether they are swept 
ahead or aft ot the Mach cone, two separate investigetions were required. 

A 36° swept wing of constant chord and a 3-percent-thick biconvex 
airfoil section (perpendicular to the leading edge) was selected for investi- 
gating the effects of boundary layer crossflow on a swept wing with a supersonic 
leading edge (Section II, Part 2, Chapter C-a and Reference 21).  Suction 
experiments were conducted at the AEDC Tunnel A on a model of 39 inches chord 
(in flow direction) at Mach numbers between 2.5 and 3.5. Laminar flow was 
maintained up to the highest tunnel pressures, resulting in maximum length 
Reynolds numbers of the order of 17, 25 and 20 x ID6 at Mach numbers 2.5, 3.0 
and 3.5, respectively. The Reynolds numbers are defined by chord length and 
velocity in flow direction.  Two different suction systems were built for the 
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model» and two separate tests were conducted to cover tne whole Mach and 
Reynolds number range. The model with the narrower slots provided better 
data ac M " 2,5, while better data at M = 3.5 was obtained with the wider 
slots. Two additional slots in front on the second suction system were re- 
quired to cover the highest possible Reynolds numbers at M = 3.0 and 3.5. 
The tests showed a higher sensitivity of the laminar boundary layer to local 
suction quantities and slot widths tnan was observed on the previous models 
without crossflow. In general, high suction was required in the front half 
and low in the rear. Expressed in terms of tne nondimensional inflow velocity 
coefficient, fj > 2.0 for x/c < 0.50; f* ~ 1.0 - 1.2 near the trailing edge. 

Computation of the laminar boundary layer development for 
sucn suction distributions gave values of crossflow Reynolds numbers at 
which full chord laminar flow was maintained: RQ.I < 180 at  70 percent chord 
and RQ#I < 250 near the trailing edge seem to be adequate design numbers. It 
was observed at M = 3.0 and 3.5 that further reductions in total drag were 
possible by a further reduction of suction in the rear portion of the wing. 
Although the boundary layer profile became unstable, the increase in wake 
drag was less than the reduction in suction drag. In these cases, the 
theoretical laminar crossflow Reynolds number would have been of the order 
of 350. 

The location of the first slot on the 36° swept suction wing 
was determined on account of the available test results on natural transi- 
tion measurements. Most ot the published data were obtained on swept wings 
with flat surfaces. A test program on boundary layer transition measurements 
on contoured swept wings was therefore initiated (Section II, Part 2, Chapter 
C-b and Reference 22). The model had the same cross section as the 36° swept 
suction wing; its sides were cut off in such a way that sweep angles of 24 
and 50° could also be investigated. The model of 9.45-inch chord (perpendic- 
ular to the leading edge) was tested at the AEDC Tunnel E-l at Mach numbers 
between 2.5 and 5.0.  The main result of these measurements was tnat transi- 
tion was affected predominantly by the bluntness of the leading edge. The 
crossflow from the swept cylindrical nose was more powerful than the crossflow 
which developed from the pressure distribution over the curved surface.  The 
reduction of the transition ReynolJs number due to sweep followed the trend 
observed in NASA experiments on blunt flat plate models. 

D. Investigation of a Highly Swept Supersonic Laminar Suction 
Wing. Swept Behind the Mach Cone 

In order to obtain the maximum benefit from the application 
of low drag boundary layer suction to supersonic airplanes, it is desirable 
to reduce the supersonic wave drag, particularly due to lift, along with the 
reduction of the friction drag. Tne supersonic wave drag can be greatly 
reduced by distributing the aerodynamic lift over a relatively large wing span 
and, in addition, over a large length. In this respect, highly swept super- 
sonic laminar suction wings with subsonic type flow over a large part of the 
wing appear attractive from the standpoint of low wave drag. The question 
then arises concerning the basic feasibility of fuJl chord laminar flow of 

.4*,      subsonic type on a highly swept wing at moderately high supersonic speeds. 
£      In order to answer this question, low drag suction experiments were conducted 
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SUMMARY (continued) 

in the 40- by 40-inch supersonic Tullahoma Tunnel A at M - 2,0 and 2.25 on 
a 72.5° yawing cambered wing ot constant chord. These experiments are 
described in Section II, Part 2, Chapter D and in Reference 23.  The design 
ot a highly swept supersonic laminar suction wing is strongly influenced by 
boundary layer crossflow consideration, particularly in the region of the 
steep rear pressure rise.  Relatively strong suction must then be used in 
the rear part of the wing to maintain full chord laminar flow under these 
severe crossflow conditions.  In order to approach area suction, which is 
aerodynamically optimum, a large number of closely spaced suction slots are 
required in this area ot tne wing. With the small scale of the model and 
the correspondingly high unit length Reynolds number, tue slot spacing 
becomes very small in the rear part of the model, and the maximum wing chord 
Reynolds number with full chord laminar flow is then largely limited by the 
slot spacing and the size of the model. The model was therefore designed 
for wing chord Reynolds numbers between 5 and 10 x 10°, 

The experiments showed full chord laminar flow with a sub- 
sonic type pressure distribution of zero wave drag at M = 2 and CL = 0,065 
to 0.07 up to Rc = 9 x 106 wing chord Reynolds number. At M = 2,25 and 
r^ 2; 0.08 full chord laminar flow was observed with zero wave drag at Rc = 
6.5 x IC^.  The total equivalent wing profile drag for the upper wing sur- 
face at Rc = 8 x 10

6 and M = 2 was CD^ == 0,0013 (including the equivalent 
suction drag).  This drag is relatively high due to the high suction quanti- 
ties wnich are required to avoid transition from crossflow instability.  In 
contras  o the upper surface, the rear pressure rise on the lower wing 
surface would be very small, and very much weaker suction should then be 
adequate to taintain laminar fiow on the lower wing surface (the estimated 
equivalent profile drag of tne lower wing surfac would then be equal to 
approximately half of the value for the upper sunace). 

A supersonic low drag suction airplane with highly swept wings 
would most likely have tapered wings with considerably reduced wing sweep at 
tne wing trailing edge, with tne flow component normal to the isobars being 
sonic over the whole chord or slightly supersonic toward the. trailing edge. 
With the reduced trailing edge sweep the crossflow in the mos; critical area 
of the rear pressure rise is then greatly alleviated, as compared with a 
wing of constant chord without taper, resulting in reduced suction quantities 
and further reduced wing profile drags. 

E. Pressure Drop in Tubes with Compressible Laminar Flow 

A;: supersonic speeds the pressure drop through the components 
of the suction ducting system of a low drag suction airplane or model can 
become large compared to the absolute pressure. Compressible flow must then 
be assumed for the analysis of the pressure change in the components of the 
suction ducting system such as tne suction slots, holes and ducts. 

In order to provide data for tne compressible laminar pressure 
drop in suction holes, the pressure distribution with laminar flow was meas- 
ured along the inside of a circular tube of 0.244-inch inside diameter and 
11.3-füot length for several inlet Mach numbers MQ and reservoir pressures 
p^ (Section II, Part 2, Chapter E and Reference 24).  The pressure ratio p/p. 
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SUMMARY (continued) 

is presented versus the nondimensional tube length X/RRR for various inlet 
Mach numbers. R^ = ü0R/u0 is the Reynolds number based on tube radius R and 
the mean velocity U0 at the tube inlet. With increasing values of M0 and 
x/RRß the density and static pressure decreased rapidly until choking occurred 
at pressures p as (0.20 to 0,25)?^, which are considerably lower than for one- 
dimensional tube flow. Boundary layer measurements showed supersonic flow 
in the center and subsonic flow toward the wall of the tube when choking oc- 
curred, with an average Mach number of approximately one. 

_    The maximum tube length Reynolds number with laminar inlet 
flow was Üox/vo = 26.1 x 106 at MQ = 0.430. 
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SECTION I 

THEORETICAL IKVESTIGATIONS 



s 

CHAPTER A.  CURRENT STATUS OF RESONANCE THEORY OF TRANSITION 

G. S. Raetz 

(A) Abstract 

An improved form of the resonance theory of transition, 
first proposed by the author in 1959, is described. For simplicity, «ainly 
a boundery layer generated on a flat wall by an unaccelerated flow of an 
incompressible fluid is considered. Also, as the conditions causing transi- 
tion, mostly simple irregularities at the wall surface and in the adjoining 
flow are assumed. The main features of the resulting motion are deduced 
from the continuity and Navier-Stokes equations. 

In this deduction, the whole motion first is decomposed into 
a basic flow, chosen as the laminar flow occurring in the absence of the 
boundary irregularities, and a sequence of perturbation flows. The basic 
flow satisfies a nonlinear but solvable differential system, whereas the 
perturbation flows all satisfy inhomogeneous linear differential systems. 
The first-perturbation flow, having just homogeneous differential equations, 
is determined solely by the boundary values representing the irregularities 
at the wall surface and in the adjoining flow. All higher-perturbation flows, 
having just trivial boundary values, are determined solely and recursively 
from lower-perturbation flows by inhomogeneous terms called driving functions 
in their differential equations. Thereby, the whole nonlinear disturbance 
motion is related directly and completely to the boundary irregularities 
themselves.  Subsequently, each perturbation flow is decomposed into a general 
spectrum of Fourier components with aperiodically varying coefficients. 

According to the theory, the main features of transition 
and also of turbulence are due to partial resonances of some Fourier components 
with the driving functions. The downstream growths of the coefficients of these 
Fourier components include variations like the exponential growths of ordinary 
linear stability theory and, more importantly, other variations which can be 
much faster and larger. As a result, the resonance theory seems to explain 
many properties of transition beyond the scope of linear theory and various 
other concepts. 

Furthermore, the theory appears to offer a possible way of 
estimating transition motions and related phenomena, including the actual 
introduction of disturbances by boundary irregularities and perhaps certain 
properties of turbulence. Some aspects of such calculations as well as some 
generalizations of the theory to other flows are discussed. 

(B) Principal Notation 

a*      spacewise fundamental frequency 
k 

&? spacewise harmonic frequency 

b.      spacewise growth factor 

c      phase velocity 

Manuscript released by the authors March 1964 for 
publication as an ASD Technical Documentary Report. 
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(B) Principal Nof.ation (continued) 

c* timewlse fundfunental frequency 

cc timewise hannonic frequency 

e^ bilinear norm component 

f .. driving tensor component 

•r 
h resonance coefficient 

i unit imaginary number 

ni. unit outward normal component 

p pressure 

q pressure (in adjoining flow) 

r adjoint pressure 

s, adjoint velocity component 

t time 

u. velocity component 

v, velocity component (at uall surface) 

w. velocity component (in acjoining flow) 

x, Cartesian coordinate 
k 

x° Cartesian coordinate (at well surface) 

x" Cartesian coordinate (in adjoining flow) 

z distance from wall surface 

a principal frequency 

p      frictional frequency 

Y      normal frequency 

6.^,     unit tensor component 

perturbation parameter 

'jk 

Q adjoint velocity gradient component 

2- 



m 

i 

* 

r 

l 

» 

«» 

(B) Principal Notation (continued) 

v., adjoint stress balance component 

yk viscosity (shearing) 

5 adjoint moffientum gradient component 
J* 

p density 

KJk 
velocity product component 

*      velocity gradient component 

'"Jk stress balance component 

A, spacewise complex frequency 

D transition domain 

E phase function 

G growth function (initial or driving) 

T I* H growth function (resonance) 

J-* integration constant 

KT resonance kernal 

P0 pressure (basic flow) 

Q0 pressure (adjoining basic flow) 

R Reynolds number (local) 

U? velocity component (basic flow) 

W0 velocity component (adjoining basic flow) 

A reference length 

T reference velocity 

Subscripts*: 

j, k, ra, n     tenso, component indices 

*When the same index appears twice in a subscript, a summation of terms 
over the range of that index always is implied. 
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Subscripts:  (continued) 

,k     co-variant derivative* (with respect to x^) 

,mn    co-variant derivative* (with respect to XQ, and xn) 

,t     partial derivative (with respect to t) 

Superscripts: 

ct harmonic index (injection flow) 

hanuonic index (fluctuation flow) 

harmonic index (resonance flow) 

amplitude coefficient (initial) 

amplitude coefficient (resonance) 

u, u*   perturbation component indices 

a, a*   harmonic component indices 

T      proper solution number 

Miscellanea: 

dtxj m 

0( ) 

( 

/\ 
( 

(~ 

(_ 

(C 

volume differential 

order of magnitude 

complex conjugate value 

dimensionless value 

fluctuation flow quantity 

injection flow quantity 

Introduction 

In the development and application of laminar flow control 
techniques, as well as in many other technical fields, a principal handicap 
always has been the lack of an adequate theory of boundary layer transition. 
In fact,  in all laminar flow control projects undertaken so far, this obstacle 
has been overcome only by essentially empirical procedures, such as extrapolating 
experimental transition data by use of ordinary linear stability theory. Thus, 
notwithstanding the notable success attained in some of these projects, the 
actual mechanism of transition never has been fully understood, and progress 
has been hindered accordingly. 

♦Identical to partial derivative (in Cartesian coordia es) 
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(C) Introduction (continued) 

In an attempt to provide an adequate understanding and thereby to 
lay a foundation for greater progress in the future, the resonance theory of 
transition was conceived and developed. The original form of this theory first 
was presented by Raetz (Reference 1). Later, it was described briefly at the 
Tenth International Congress of Applied Mechanics by Stuart (Reference 53). 
Also, a feature of this form needing some clarification was pointed out at a 
meeting of the American Physical Society by Benney and Lin (Reference 27). At 
present, a substantially Improved and extended form of the theory, believed to 
be useful as a basis for analyzing and predicting transition phenomena and for 
calculating some transition and turbulence motions as well, has been evolved. 
The basic elements of this form of the theory are explained here. 

To simplify the analysis as much as feasible, just a relatively 
simple boundary layer development is examined in detail. Specifically, except 
for some generalizations Indicated later, the boundary layer is assumed to be 
generated on a flat wall by an unaccelerated flow of an incompressible fluid. 
Thus, without Irregularities at the wall surface and in the adjoining flow, the 
well-known Blasius laminar boundary layer would exist over the entire wall. To 
include elementary conditions that can cause transition, a weak simple injection 
of fluid through the wall surface and a weak simple fluctuation of the adjoining 
flow are assumed to occur. Otherwise, the wall surface is regarded as completely 
smooth, and the mean flow itself is regarded as uncurved and as parallel to the 
wall except for a slight deviation due to the boundary layer growth. For such 
conditions, a Cartesian coordinate system along with a Cartesian tensor notation 
is satisfactory and therefor« it used, and a major boundary value problem associ- 
ated with a rough wall is avoided. 

In the analysis, a basic technique is to decompose each unknown 
(such as the pressure, velocity, or stress) into simple elements which, in general, 
can be investigated and calculated separately and relatively easily. Tlvus, after 
decomposing each unknown into its tensor components, each tensor component is 
decomposed into a basic component (chosen as the tensor component for completely 
laminar flow) and a sequence of perturbation components, and then each perturba- 
tion component is decomposed into a multi-dimensional spectrum of Fourier com- 
ponents (containing a mean component as well as oscillation components). To 
adequately cope with a nonlinearicy of the problem, each Fourier component is 
represented by a product of a periodic phase function and an aperiodic Fourier 
coefficient which in turn is represented by a product of a growth function and 
an amplitude coefficient. The growth function includes any rapid variation along 
the wall surface, while the amplitude coefficient includes the rapid variation 
normal to that surface.  Eventually, in the actual calculations, the amplitude 
coefficient in an approximate form would be decomposed into fundamental solutions 
of an ordinary linear differential system. The whole motion itself is constructed 
merely by recomposing the elements thus found. Although such motion often may 
appear to be exceptionally complicated, relatively few of the many possible ele- 
ments usually need to be investigated and calculated. Due to the number of 
decompositions, though, the notation is tedious and must be carefully treated. 

In a corresponding manner, the differential system for the whole 
motion, which includes the nonlinear Navier-Stokes equations, is decomposed into 
a basic system (identical to the nonlinear system for completely laminar flow) 
and a sequence of perturbation systems (all linear), and then each perturbation 
system is decomposed into a roulti-dimensional spectrum of Fourier systems.  In 
the first-perturbation systems, the differential equations are ail homogeneous, 
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(C)  Introduction (continued) 

whereas in the higher-perturbation systems, the differential equations contain 
driving functions (inhomogeneous terras) that depend solely on products of lower- 
perturbation components.  Consequently, the first-perturbation components are 
detenained completely by the boundary values representing the injection at the 
wall surface and the fluctuation of the adjoining flow, and all higher-perturba- 
tion components are determined completely by their driving functions and thus 
recursively from lower-perturbation components.  Thereby, all Fourier components 
are determined individually and explicitly in a sequence starting from the Fourier 
spectra of the boundary irregularities themselves.  In these determinations, by 
extracting the phase and growth functions, the Fourier systems are reduced to 
amplitude coefficient systems, which in turn are approximated with sufficient 
accuracy by ordinary linear differential systems that are similar or, in many 
cases, identical to the veil-known Orr-Sommerfeld system. 

According to the resonance theory, the main features of transition 
and also of turbulence are due to partial resonances of some Fourier components 
with their driving functions.  For example, two Fourier components, such as one 
from the fluid injection distribution and one from the adjoining flow fluctua- 
tion, may form driving functions having space and time frequencies which, over 
some part of the wall, happen to almost coincide with the natural frequencies of 
the driven Fourier component.  In this case, over that part of the wall, the 
latter component will grow rapidly and greatly with downstream distance, although 
elsewhere it usually will grow or decay only slowly.  Such variations are included 
in the applicable growth function, which therefore is especially important in the 
analysis.  Likewise, over other parts of the wall, other partial resonances from 
other pairs of Fourier components of the same or other perturbations may occur. 
In the whole process, the mean components of some perturbations can become large, 
causing a large distortion of the whole mean flow, and certain oscillation compo- 
nents of various perturbations can become significant, producing a variety of 
oscillatory phenomena like those observed at transition and in turbulence.  Con- 
versely, over a part of the wall, for certain boundary values, motions resembling 
those predicted by ordinary linear stability theory can appear, and over other 
parts of the wall, motions resembling those of other theories evidently can occur 
insofar as such theories are valid.  Thus, it appears that many correlations with 
experimental observations on transition, as well as with the verifiable parts of 
related theories, eventually can be established. 

In more general boundary layers, various special phenomena can 
be caused by similar resonances.  For example, when the wall surface is appropri- 
ately curved, Görtier vortices can be produced, and when the adjoining flow 
is sufficiently curved, crossflow vortices can be generated.  In the resonance 
regions, the growth of these vortices with downstream distance will differ sub- 
stantially from that predicted by ordinary linear stability theory, perhaps 
explaining a discrepancy between that theory and experiment.  Also, the effect 
of wall vibration and external sound on the boundary layer development apparently 
can be explained satisfactorily by partial resonances.  Moreover, it appears 
that the influence of wall roughness on transition and turbulence can be fore- 
cast once a suitrble technique for handling an associated linear boundary-value 
problem is developed.  Furthermore, analogous resonances can occur in compressi- 
ble flows, probably explaining the principal features of transition at subsonic, 
supersonic, and even hypersonic speeds.  Indeed, in still more general flows, 
important features of a variety of critical phenomena -- such as the combustion 
instability of rocket motors, the plasma instability of thermonuclear power 
devices, and the general circulation of the atmosphere -- probably can be 
explained and analyzed in terms of similar partial resonances. 



(C/ Introduction (continued) 

Due to the large number of other investigations of transition 
that have been and are being conducted, a proper resume'of other transition 
theories delineating between seemingly valid and invalid aspects would be too 
lengthy to be practical here. However, some of the current theories and related 
work, as well as references to earlier research, are included in the papers listed 
as references. Needless to say, the present theory is indebted to these and other 
theories and invescigations for some techniques and details and also for some hints 
as to promising and unpromising directions of search. Also, in developing this 
theory, the author personally was aided by many discussions with Dr. Werner 
Pfennlnger. This assistance Is acknowledged with gratitude. 

(D) Differential Systems 

To adequately explain the theory, several differential systems and 
some special quantities and concepts first must be Introduced. The inherent com- 
plexity of transition seems to preclude a satisfactory simpler approach, at least 
in this preliminary exposition. 

(I) General System 

To represent the transition region, Cartesian coordinates 
«IJ (k «■ 1,2,3) are used, th« boundary layer being generated on a wall surface 
at X3 = 0 by an adjoining flow at X3 = a».    When necessary to be more specific, 

the whole mean flow is regarded as In the positive xpdirection. The velocity 

components Uj (j = 1,2,3) and the pressure p vary with the coordinates end also 

the time t, whereas the density p and the viscosity n are constants. Co-variant 
derivatives, which in these coordinates are identical to partial derivatives, are 
denoted by a subscript comma followed by the subscript indices associated with 

the varied coordinates; for example, Uj jj = dui/dx^ and u. ^ = d^/dx^Bxn 

(m.n ■ 1,2,3). Similarly, timewise partial derivatives are denoted by a sub- 
script comma followed by a subscript letter t for each differentiation; for 
example, u« ^ = dUj/St. Wherever the same index appears twice in a subscript, 
a summation of terms over the range of that index always is implied; for example, 
uj j S ul I ■♦• u2 2 * u3 3.  (This convention, though, is not extended to super- 
scripts.** 

In this notation, the differential equations of the whole 
motion, which include the incompressible continuity and Navier-Stokes equations, 
usually would be expressed in a form such as 

UJJ - 0 

P(uj,t * uj,kuk) = "P,j + ^J,kk (1) 

where j and k range over 1,2,3 (see,  for example. Reference25).    Here, however, 
another fonr. is more convenient and therefore is used.    Thus,  to confine the 
nonlinearity to a simple algebraic relation,  the velocity product components 
«pi^ » tt4uii are introduced, and to allow a first-order system the velocity 
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(1) General System (continued) 

gradient components ».,, = u. ,. are included. Also, to arrive at shorter equa- 

tions later, the stress balance components uu.^ = Pc^ ♦ P^ik " ^^ik * ^ki' are 

used, where the unit tensor coaponents ftj^ equal 1 if j • k but equsl 0 if J # k« 

Thus, the equations to be considered are 

cjk = ujuk 

•jk = uj.k 

^jk= p^'jk+ pfcjk - ^jk+ ^ki) 

^j = 0 

PUj.t  + ^jk.k = 0 

(2) 

where j,k = 1,2,3. Equations (1) are regained merely by eliminating CDj^, fjk» 
and a1^. 

As will become apparent, several boundary conditions for 
these equations already are implied by the type of motion considered. Conse- 
quently, as boundary values, just the wall surface velocity components vi 

(j = ^f2.3) along with the adjoining flow velocity components Wi (j = 1,2,3) 

and the adjoining flow pressure q are needed here. Thus, identifying coordinates 
at the wall surface and in the adjoining flow by the superscripts o and «5, 
respectively, the boundary conditions to be imposed explicitly are 

u . (x, , t) = v . 

UjCx^t) = w. (3) 

p(x^,t) = q 

where j,k = 1,2,3 and V;, WJ, q are given functions. As is essential, wi and q 

are to satisfy Equations (1) or (2) within the adjoining flow itself. 

(2) Perturbation Systems 

To obtain a sequence of differential systems that can be 
solved in a convenient manner, all dependent variables are represented by 
perturbation series in a perturbation parameter e, which is stipulated later. 
Perturbation coefficients are distinguished by the superscript u (or u^) alone 
whereas parameter powers are indicated by parentheses with the superscript u 
attached. For example, the velocity components and the pressure are to be 
represented as 

uj = '-o uj(e) 

P = E0 p (e) 

(4) 
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(2) Perturbation Systems (continued) 

Substituting such series and equating coefficients of equal powers of e, Equations 
(2) «nd (3) decompose into the perturbation differential equations 

jk    j.k 

^k-P^k^^jk-^^kM^j) ^5) 

pULt + ^k.k ' 0 

and the perturbation boundary conditions 

uj   (xk'c) = Vj 

uj  (x^.t) = wj (6) 

p   (xk'
t) = 1 

where y = 0,1,2,...,« and vV, wV, qu are given. These systems are to be solved, 

insofar as is necessary, separately but recursively (in the same order as their 
perturbation orders). In most cases, based on available evidence, the resulting 
series should converge satisfactorily. Otherwise, in exceptional cases not 
covered here, incorporation of some technique for sununing slowly converging or 
diverging series (see, for example, References 35 and 36) might be desirable or 
necessary*. 

The singular perturbation component for u s 0, called the 
basic flow, is chosen to be the steady laminar flow that would occur if the wall 
surface Irregularity and the adjoining flow fluctuation were absent. Thus, 
replacing lower by upper case letters for emphasis, the basic flow system is 

A0 fI0IlO 

*jk" Vk 

»JK ■ uj.k 

'V^k^V-^V^j' <7) 

n
Jk.k • 0 

c» 
*For example, a truly parallel flow, such as an asymptotic suction boundary 
layer, may entail questionable convergence. 
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(2) Perturbation Systems (continued) 

and 

o o 
Uj(xklt) = 0 

Uj(xJ,t) = Wj (8) 

P0(x^t) = Q0 

where W1 and Q
0 are given constants, W? « 0, and W, need not be given.  (Wj is 

ascertainable by substituting v/j1, W^, and Q0 into Equations (7).) Due to the 

quadratic terms in the first equation, the basic flow system, unlike the other 
perturbation systems, is nonlinear. However, upon eliminating i?^, y?^, and 

wjk» Equations (7) reduce to the steady continuity and Navier-Stokes equations, 

which can be approximated satisfactorily by steady laminar boundary layer equa- 
tions. In fact, as explained later, the resulting system yields merely the 
well-known Blasius laminar boundary layer as the basic flow. 

After ascertaining the basic flow, the perturbation compo- 
nent for u = 1 1» obtained from the differential equations 

I L.o   k „o 1 
*jk' UA * Vk 

♦jk ■ uj.k 

ujk = pcojk 
+ P 6jk - ^(*jk ♦ 7kj) 

JJ 

Puj,t + ^jk.k = 0 

which are both linear and homogeneous. Thus, this component is determined solely 
by the boundary values representing the boundary irregularities.  In fact, it is 
the sum of two simpler elements:  one determined by the fluid Injection distri- 
bution, called the injection flow and distinguished by an underline; and the other 
determined by the adjoining flow fluctuation, called the fluctuation flow and dis- 
tinguished by an overline.  In most of the analysis, just normalised injection 
and fluctuation flows are required, the appropriate boundary conditions therefore 
being 

u((xf,t) = vl 
-j k    -j 

uJtxT.t) =0 (10) ^*k 

pl(xr,t) = 0 

•10- 



(2) Perturbation Systems (continued) 

and 

uj(x^t) • 0 

1 «    -I 
Uj(xk>t) » wj (ID 

pl(x^t) - ql 

where v., v\,  q are normalized boundary values ascertained fron the boundary 

irregularities. As is necessary, w* and q are to satisfy Equations (9) with 
o o 

Uj replaced by Ui. Where required, the actual injection or fluctuation flev is 

obtained merely by multiplying the normalized flow by an injection parameter 
e or a fluctuation parameter *£, respectively. Along with this normalization, 
the perturbation parameter Itself is chosen as 

1/2 
e - (c") (12) 

so that, as is appropriate, e depends solely on the magnitudes of the boundary 
irregularities. Correspondingly, the whole perturbation component is normalized 
by dividing its actual quantities by «. 

With all boundary irregularities thus taken into account, 
each higher perturbation component, for v ^ 2, is determined solely by a driving 
tensor with the components 

f jk = Ij-'u/-^* (13) 

which in turn are determined solely by lower perturbation components.  Thus, the 
higher perturbation components are obtained recursively using this relation 
together with the inhomogeneous but linear differential equations 

(14) 

*jk • ujuk + ujuk 

♦jV »u 
^jk" pcpjk ♦ P^j 

V 
0 

V 
Puj.t ks0 

and the trivial boundary conditions 
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(2) Perturbation Systems (continued) 

ujuj.t) = 0 

uj(x^,t) = 0 US) 

pVCxfc,t) = 0 

where y « 2,3,...,».  Just normalized perturbation components must be and there- 
fore are determined from this system, the recursive relationship yielding such 
components when just normalized first perturbation quantities are used in Equa- 
tion (13). Where necessary, each actual perturbation component is obtained by 
multiplying the normalized component by a power of e, this power being equal 
to the perturbation order. 

(3) Fourier Coefficient Systems 

To adequately express the intricate motions of transition, 
each quantity of each perturbation component except the basic flow is repre- 
sented by a complex Fourier series which extends over each coordinate and the 
time and also has aperiodically varying coefficients. The spacewise fundamental 

frequencies aj; (k = 1,2,3) and the timewise fundamental frequency c* are deter- 

mined solely by the boundary irregularities.  Specifically, these frequencies 
have the largest real values that enable an adequate representation of both the 
fluid injection distribution and the adjoining flow fluctuation. However, to 
encompass nonperiodic as well as periodic boundary irregularities, these fre- 
quencies may approach zero as a limit, the Fourier series then becoming Fourier 

integrals.  Introducing a harmonic index o with four components (o*, c^, o^, c^) 
which each range over 0,±1,±2,.. .,±oo, the spacewise and timewise harmonic fre- 

quencies are a^ = a^c (k = 1,2,3) and ca = c a » respectively. Designating 

the value (0,0,0,0) by 0 and the value (-cl,-02,-c^,-or) by -o, these fre- 
quencies obey the relations 

a£ = 0 c0 = 0 

-c     C -0    0 a,. = -ak c  = -cu 

0-0* ^  o* _  o o-o* ^  o* » c ak     ak   ak c    + c  = c 

Each term of each Fourier series contains the phase function 

o o J 
E    = exp i(akxk + cwt) (16) 
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(3) Fourier Coefficient Systems (continued) 

with the loportanc properties 

E • I 

•^-t3 

and 

ooo o a a E  « ia E E  » ic E 
»k    k tt 

where i is the unit insginary nunber and the overscript — denotes the complex 
conjugate value. Although ti^ewise oscillations necessarily are encompassed, 
just spacewise variations of the coefficients themselves must be considered 
here (since the boundary layer is "equilibrated" in time). Thus, each coeffi- 
cient is, at most, an aperiodic complex function of the coordinates alone. For 
example, the velocity components and the pressure of each perturbation component 
except the basic flow are represented as 

Ui « i, Ui ^x^'E 

V        ...     WO,  w.3 (l7) 

p » L p (xk)E 

where the summation extends over the whole range of each harmonic index component. 
Finally, since all physical quantities are real, the two merabers of each pair of 
coefficients for each pair of values to  necessarily are complex conjugates. For 

example, since py ■ |ry, 

IP
I,
V- ip^r 

« Z pva E"0 

whence,  equating coefficients of equal phase functions, p      = p" *     .    (Super- 
script   cosaas,   unlike subscript commas,  merely separate indices as necessary.) 

In actual boundary layer developments,  the boundary  layer 
values at the wall  surface and in the adjoining flow generally contain large 
spectra of influential Fourier components.    In fact,  even f        he elementary 
boundary irregularities concerned here,   the non-trivial bounuary values of the 
firüt-perturbation component ordinarily would be 
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(3)    Fourier Coefficient Systems (continued) 

v]'Zv]aE.0 (18) 

where each component of o nay range over many integers and the Fourier coeffi- 

cients vj • Vj , q  may be aperiodic functions of the coordinates. However, 

In the analysis Itself, many fundamental details can be explained adequately 
and simply In terns of just single Fourier components of relatively elementary 
types. Therefore, for the present, only such spectra are considered, generali- 
zations to other spectra being discussed later. Specifically, except when other* 
wise Indicated, the fluid Injection distribution .s to Include just an exactly 
slmple-harmonlc stationary wave, distinguished by using the superscript la in 
place of other identification; and the adjoining flow fluctuation is to Include 
just a nearly slmple-harmonlc traveling wave propagated parallel to the «all, 
distinguished by using the superscript 13 in place of other identification. For 
such spectra, the whole motions at the wall surface and in the adjoining flow 
are 

lo, lOplo ^ ~lccrl(ix v. s     e (v- E  ♦ v.T: ) 
j j      j 

IS    1-  Ip     -V.1D~1D% 

'j ' "j ^    (WJ E      + Wj 
w, = W,  ♦  c    (w.  E      ♦ w,   E    ) (19) 

o        lp    lp 19     US^lp, 
q = Q+£    (qE      ♦q     E) 

u la        la        Is      n      J    la w    J fc    fc      i-^i       If     J    lp where a-    = c      = a,    = 0 and v.    are normalized constants while Wi    and q 

are normalized weak aperiodic functions of the coordinates.    For definlteness, 

the orders of magnitude of W4,  Q    and vt   ,  w*   ,  q      are  taken as unityboth 

e      and  e K,  along with  e =  ( e ae    )       ,  therefore being much smaller than unity 
(since only weak boundary irregularities are  involved). 

For the boundary values under consideration,   the normalized 
injection and fluctuation flows,  being solutions of homogeneously linear diff- 
erential equations,  can be represented by two-term series such as 

1        la la     ~lG~Ia 
u; = u .  E      "♦■ u ,   E 
-J        J j 

1 lo^la      ~la~la p    = p    Ü      +  p     c 
(20) 
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(3) Fourier Coefficient Svstea« (continued) 

and 

«I        Ifc 19 ^ UB»13 
Ui s Ui E      ♦ Ui   E 

f . plsEi3 ♦pie ^13 

respectively. Hence, substituting such expressions into Equations (9) and 
equating coefficients of equa. phase functions, a single Fourier coefficient 
system for each flow is obtained. For the injection flow, the differential 
equations are 

la _ lat,o ^ „o la 
^Jk • uj Uk * üjuk 

lo    la la   la 
vjk " luJ *k * uJ,k 

U)Jk- 0<Cjk ♦ P 6jk - n(|jk* t^) (22) 

.  la la ^ . la la ^ la   n ipc uj ♦ i(i)jkak ♦ u)Jktk - 0 

with ai9 ■ c a « 0. For the fluctuation flow, the differential equations are 
16 

Che same as Equations (22) except with a replaced by ß and with A3 « 0. The 
applicable boundary conditions are 

la. o.   la 
Uj (Xk) « Vj 

u.la(x^) = 0 (23) 

plQ'(xk) = 0 

and 

where v 

UjB(xk) » 0 

Ujlp(xk) = wj
8 (24) 

p1 V) . ql« 

ja. WjP. q  «re coefficients from Equations (19). Whereas v|a are to be 

Its     1P 
constants, w. and q  are to be weak aperiodic functions of the coordinates 
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(3) Fourier Coefficient Systems (continued) 

satisfying Equations (22) with Ü? replaced by W?. The whole pertur- 

bation component for y « 1 can be represented by four-term series such as 

€Ui-£      (Uit        ♦Ui£       )*C      lUit ▼Uit        ) 

(25) 

ep1 = c
lo(plQEla ♦ ?lar10) ♦ e^p1^19 ♦ pls,rlß) 

obtained . rora Equations (20) and (21). Here, as well as for the more general 
boundary values, this perturbation component does not contain a mean Fourier 
component (with the phase function E0).  If the boundary irregularities con- 
tained a mean Fourier component, it could and therefore would be included in 
the boundary values of the basic flow Itself, always leaving the first-pertur- 
bation spectra without any mean component. 

Substituting general Fourier series into Equations (13) and 
equating coefficients of equal phase functions, the general Fourier coefficient 
of the driving tensors is obtained as 

f jk ' Ll'1  (i- uj"1*'0-0^*'0*) (26) 

where v s 2,3,...,<x and each component of c and o* may range over 0,±1,±2(...,±<B. 

Thus, each such coefficient, besides belonging to a generally large spectrum. 
Involves a generally large sum of products of quantities from lower perturbation 
components. However, the actual value of these coefficients, being dependent 
on products of small actual quantities, usually are very small.  In fact, In 
most boundary layers of practical interest, the Fourier components of the driv- 
ing tensors can significantly affect the motion only at relatively infrequent 
conditions.  These exceptional conditions, as elucidated later, are those allow- 
ing strong partial resonances between the driving and the driven Fourier compo- 
nents over long stretches of the bounda y layer. Consequently, due to this for- 
tunate feature, just a relatively small number of the Fourier coefficients of 
the driving tensors must be considered. Furthermore, in the sura for each of 
these coefficients, as will become evident, merely a few exceptional terms con- 
tribute significantly to the partial resonance and therefore roust be retained. 
In the particular boundary layer concerned here, wherein the first perturbation 
component has just finite spectra, the driving tensor components also have just 
finite spectra and the sums are finite as well. Nevertheless, as will be explained, 
relatively few of even these coefficients and terms need to be analyzed. 

In particular, the driving tensor for y = 2 has the components 

2    1 1 
fjk m ujuk 

and therefore, using Equations (25), just the Fourier coBponants In tha «xprratslon 
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(3)    Fourier Coeffi   lent Systeas (continued/ 

lo 1-2        r  la,   la^la        -IQ„-1C>,        la,   lo-lc ..    -Ip^-lä  , 
e    --    fjif ■ [e    tu* E     ♦ uj    t      ) ♦ c    (uj E     ♦ u.    E      )J 

r   lo    la la        -ly -la Ip    19  19        -IB -li  , 
x  fc    (u.   E      ♦ u.     £       )  *   e    (u.   E      ♦ u.     E       )] 

k k k k J 

Thus, in this case, each driving tensor component has only five distinct Fourier 

components, these being one real mean component with the phase function E0 and 
la 'a  11' four complex oscillation components with the phase functions £ C , £ "£ ", 

£.  ^c*^, and L a/t. s.    Moreover, due to the restricted range of the natural fre- 
quencies of the driven Fourier components (see Part (G-3), just one of these 
oscillation components has a possibility of yielding a significant partial 
resonance, this component being the one with the phase function E*0^*6 or 
li  1 - 

£ /£ , depending on the particular harmonic frequencies involved. For defi- 
nineness, this exceptional component, to be distinguished by the superscript 
2\, presently is assumed to have just the phase function 

with the harmonic frequencies 

2v   la 
+ ak 

(27) 
ak = \    + ak 

2^   la   U c  = c  ♦ c 

where k = 1,2,3. Hence, for y * 2, just the mean components as evaluated from 
merely the dominant terras of the relations 

la lMr2,0   la la, la -la _.     -lu la. 
C  €  fjk  = €  €  (Uj Uk   + Uj  Uk ) 

and just the oscillation components 

2v   la lc   lc lo 
fjk ' uj "k *  uj uk (29) 

must be considered further.  In fact, for this particular value of u, as will 
be explained, even the mean components usually should be negligible. 

Similarly, the driving tensor for u a 3 has the components 

r3    12   2 1 
fjk " ujuk * ujUk 
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(3) Fourier Coefficient Systems (continued) 

of which relatively few Fourier components are important.  In this case, a mean 
component is not included, the same being true for all other odd values of v. 
Any oscillation component of importance, as will become apparent, has a phase 

function E3^ which is the product or quotient of E2v with either ElQr or Eld. 
3v 

As in the case for u * 2. just the terms in the coefficient of E  must be kept. 
Moreover, the driving tensor for y = 4 has the components 

,4    13   2 2   3 1 
fjk = ujuk * ujuk + uJuk 

of which few Fourier components must be retained.  In this case, a mean component 
component is involved, as is true for all other even values of v.    Also, any 

oscillation component of importance now has a phase function E v composed of the 

square of E  or a combination of E  with either E  or £ . Hence, all terms 

except those in the coefficients of E0 and E Y can be omitted. Finally, the 
driving tensors for the higher values of y car be simplified in the same way. 

Consequently, using the superscript A to denote the relevant 
lower perturbation quantities and otherwise replacing lower by upper case letters 
for emphasis, the mean Fourier coefficients of the perturbation components for 
u = 2,4,...,tD are obtained from the mean driving coefficients 

FVk = „^A ,30) 

and the differential equations 

u v o       o u        y 

Sk = Vk+ Vu+ Fjk 

'jk      Uj,k 

^k = **]*+ pU6jk ■ ^^k+ \V (31) 

with the boundary conditions 

Uj(xJJ) = 0 

uJCx^) = 0 (32) 

P (xk) = 0 
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(3) Fourier Coefficient Syttema (continued) 

Eventually, the whole mean notion could be expressed in perturbation series such 
as 

Ü. - Uj ♦ i. (üj ♦ U])(€)U 

P « P0 ♦ r (P17 ♦ Pv)(r)tf 
(33) 

where v ■ 2,4,...,«. However, in the boundary layer concerned here, besides the 
singular terms for y = 0, probably jus» the terms for y = 4 will be large enough 
to merit consideration within the transition region. 

Likewise, using the superscripts 6 and ? to denote the rele- 
vant lower perturbation quantities, the oscillation Fourier coefficients of the 
perturbation components for v * 2,3,.-.,x are obtained from the oscillation driv- 
ing coefficients 

fjk " ujuk *  ujuk (34) 

and the differential equations 

vy       u o   o u\   i.'-T 
^jk = uj uk + ujuk * tjk 

'jk = ^ ak  + Ujfk 

^jk = P-jk + P 6jk " ^^jk *    kj5 (35) 

']}'0 

uv uv    yv yy   y\ 
ipc UJ ♦ ixjkak ♦ ^jkfk = 0 

with the boundary conditions 

y  o 
u. (x^ = 0 

UjV{x^) = 0 (36) 

yv  « 
p Y(xk) = 0 

Ultimately, using the superscript r to denote the dominant terms of each pertur- 
bation component, the whole oscillatory motion, distinguished by the superscript 
*, could be expressed in perturbation series such as 

u.1B^(u.h,  ♦u: £.  )(€) 

p* = >. (pülEy ♦ ^'■Ty){Ov <37) 
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(3) Fourier Coefficient Systems (continued) 

where v = lt2,3,...,».  Here, however, probably just some of the terms for 
v = 2,3,^ will be large enough to be essential in these series. When the 
boundary irregularities include more Fourier components, the resulting motion 
is substantially more intricate. This property, rather than the higher per- 
turbation components, probably accounts for much of the complicated appearance 
of most actual transitions.  In some boundary layer developments, though, a few 
higher perturbation components may be  significant. Also, such components may 
become important downstream of transition. 

(4) Amplitude Coefficient Systems 

Although many rapid variations in the form of the phase 
functions already have been separated from the original quantities, other rapid 
variations in the form of special growth functions later will be extracted from 
the Fourier coefficients themselves.  For this purpose, various quantities called 
the amplitude coefficients, which in the x^ and X2 directions vary as slowly as 

the basic flow itself, are needed.  These coefficients now are defined by intro- 
ducing their governing differential systems,  eventually, using approximations 
analogous to the conventional boundary layer assumptions, their systems will be 
reduced to dimensionless ordinary differential systems with the dimensionless 
x.,-coordinate as the independent variable. These approximate systems encompass 

the well-known Crr-SommerfeId equation and can be solved satisfactorily by a 
technique that would be suitable for accurately integrating that equation. 

Thus, the initial amplitude coefficients, denoted by the 
superscript K, are defined as the solutions of the homogeneously linear differ- 
ential equations 

H      K,,0   .,0 H r-j\< = ujvk+ Vk 

'jk = iu>k * uj(k 

xjk = p-jk + p'5jk ■ -(-Jk * •kj) HS) 

4
K. = o 
JJ 

ipc u.  *  UjkAk +  Ajktk = Ü 

and  the non-trivial boundary conditions 

K      O H 
u .(x, )  =  v. 

J     k J 

Uj(xk) = w^ (39) 

P   (X.  )   =   q 
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(4)    A^glitude Qoefti^^&Tit Sygteaa» (continued) 

where the parameter c    Is a real constant but the parameters A,Ä ami the boundary 

value« v^, w^, qH are complex conitant«.    These coefficients include the injec- 

tion amplitude coefficients, for which A| « cK « 0 and w^ • qK » 0, and the 

K H 
fluctuation amplitude coefficients, for which A3 » 0 and v* « 0.  In the former 

case v^ can be arbitrary, but in the latter case w^ and qH must satisfy Equa- 

tions (38) with Ui replaced by W^.  In both cases, just normalized boundary 

values with an order of magnitude of unity are considered. 

Next, the resonance amplitude coefficients, denoted by the 
superscript X, are defined as the solutions of the homogeneously linear differ- 
ential equations 

X    X„o  „o X 
~jk s ujuk + ujuk 

^jk" lu
j\

+ uj,k 

(40) ^jk " P^jk * P 6jk * ^(Vjk * ^kj) 

X  = 0 
'jj 

ioc'uj +   iu.jkAk ♦  xjktk = 0 

and the trivial  boundary conditions 

uj(x°) = 0 

Uj(xk) « 0 (41) 

p   (X^)   a   0 

where the parameter c is a real constant but the parameters A. necessarily are 

weak aperiodic complex functions of x. and X2.  In the diraensionless approximate 

system deduced later, the parameters include just the local Reynolds number 

R = oAT/i-u the dimensionless timewise frequency c = c A/T*  and the dimension- 

less spacewise frequencies A, = Aj-A, where the reference length A and the refer- 

ence velocity X characterize the local basic flow thickness and the adjoining 

flow velocity, respectively. Also, for given values of R aid c , the dimension- 
less approximate system has non-triv'^l solutions, called the proper functions, 
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{*»}    Ajiiplituüe Coefficient Systems (continued) 

if and only if  the parameters Aj^ have certain singular values,  called  the proper 

values.    Consequently,  the dimensionless proper values depend on just R and cA, 
and the dimensionltas coefticients depend on just the^e parameters and the 
dimensionless x^-ooriinate.    However, due to the variation of A and therefore 

R and c    with xj ar.d X2,  both the dimensionless and dimensional parameters,  as 

well as the dimensionless and dimensional coefficients, are weak aperiodic func- 
tions of x^ and X2.    The p-)per solutions, distinguished by the superscript T, 
are not unique but Instead jinge over a sequence of discrete solutions. For 
convenience, as is probably true, the proper values of different solutions are 
assumed to be distinct in all cases, and the number of solutions is assumed to 
be infinite, although these properties neither h, ve been proven nor are essen- 
tial. Alfo, the solutions are regarded as ordered so that the absolute proper 
values 

KTI = 'W'1'2 

form an ascending sequence, represented by the sequence T * 1,2,...,». 

Although only real values of K exist in the physical prob- 
lem under consideraticn, certain complex values of R appear in the mathematical 

representation of the partial resonances.  In particular, the points In the 

complex R*plane where A^ have specified real or nearly real values, while 

c VR has a specified teal value, are involved. However, merely those points 

located on or near the real R-axis are important, since only such points are 

encountered in the significant partial resonances. As a result, usually just 

a single proper solution, which happens to be the same as the one considered 

in ordinary linear stcbility theory, is essential in the analysis. However, 

the present application of this solution, assumed to be the one for T = I, 

differs greatly from its utilization in that theory. 

i'inally, the adjoint amplitude coefficients, denoted by 

E .. ,  ., , 'A, , r , and s,, are needed. These coefficients are defined In the 
=jk  jk' ^jk'  '     y 

transition domain D enclosed by the boundary surface D* on which the unit out- 

ward normal vector has the components n^ (k = 1,2,3). Besides the whole tran- 

sition region, D may include at least parts of the adjacent laminar and turbu- 

lent regions. The governing diffe^ential system is deduced by multiplying 

Equations (40) by J.1<, ' •K, ^k, r v, and Sx,   respectively, integrating the sum 

of the resulting scalars over D, rearranging terms using integrations by parts, 

and imposinr conditions satisfying Equations (40) and (41). This process 

yields the calar identity 
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(4)    ABDlituito Coefficient Svgt— (continued) 

J   {5jk(Vjk - "K " "j«^ * ^Jk^Jk * ^jAfc * uJ,k) 

♦ Cjk C^k - P^k ■ P^jk * ^jk * ♦kj^ * rX*jj 

x      xx       xx      x     i 
♦ fjdpc «j ♦ iwj^ ♦ »Jkfk)| d(x|B) 

♦ u} [ipcxtj - (?)k ♦ eij)^ > mJkAi ♦ T]}k#k]} CKX.) 

4 h»j4k - uj
XT]j

X
k)nkd*(S) (42) 

where (Kx^) «nd d*^^) denote volume and erea differentials, respectively 

(m *  lt2t3>. To satisfy Equations (40), the left member and therefore the 
right member of this relation oust vanish.  In the right member, this require- 

ment is met if the coefficients of cpVk, tr** tvjk, p , and uj vanish in D and 

the coefficients of nk vanish on &*• Thus, Equations (40) and (41) together 

are satisfied by imposing the homogeneously linear differential equations 

t*- P^Jk 

<■ -rSk - "^Jk * ^ 

t*- -"K* •U 
tr 0 

(43) 

and the triial boundat7 conditions 

sj(xj) - 0 

Sj(xJ) • 0 

v'ixZ) - 0 
-23- 
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(4) Amplitude Coefficient Systeas (continued) 

The parameters here are the same as those in Equations (40). Also, for given 

values of R and c , the dimenslonless approximate system has non-trivial solu- 

tlons, again called proper functions, if and only if the parameters A^ equal the 

proper values of the corresponding system for Equations (40) and (41). As a 
result, both the dimenslonless and the dimensional quantities are weak aperiodic 
functions of xj and X2. Moreover, the proper solutions, again distinguished by 

the superscript T, range over a sequel «J of discrete solutions, again represented 
by the sequence T = 1,2,...,». Howev , whereas the proper values are Identical, 
the resonance and adjoint amplitude coefficients themselves are different.  (Their 
differential systems, unlike the more familiar systems of the prevailing litera- 
ture, are not self-adjoint.) 

An important property here is the fact that, in the transi- 
tion domain, each adjoint solution is orthogonal to all resonance solutions except 
the one with the same proper values.  In particular, substitution of a resonance 
solution for T = T^ and an adjoint solution for T = T2 in Equation (42) yields 

the identity 

T1T2..XT1   .'T2 
-k  Uk  - rtk (45) 

rlT2 
where the inner product components e^   are defined by 

J (sj ^jk - uj jk ) ^V = ek (46) 

■Tl    XT2  T1T2 
Consequently, if A^ f  n^ , ej,   vanish -- meaning that the two solutions are 

KT1 \T2  T1T2 
orthogonal -- whereas, if A^  = A^ , a^ " do not all vanish. For convenience, 

the resonance and adjoint solutions, which each contain an arbitrary factor owing 
to the homogeneity of their differential systems, are regarded as normalized 
simultaneously.  Specifically, the two arbitrary factors for each value of T 
are assumed to be chosen so that 

eiek = l (47) 

T where  the  bilinear  norm components e^ are defined  by 

XT  >.T AT  \T T 
J     (Sj   ajk  -   uj   Ttjk)  ü(xm)  = ek %) JJ  J  Jr-   j  j-    '"    ^ (48) 

with Re(e1) > Ü when the mean flow is in the positive x,-direction] and so that 

bJ = 1 (49) 
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(4) Aaplltude Coefficient Svteas (continued) 

T 
where the trlllnear nora 8    is deflneo by 

r XT   \J  AT T ._ 
JD   1"J  5jk«k > <"«■> - 8 (50) 

TlT2 
At DIM result, e^       will satisfy the equations 

T.T, T.T- 
ek      ek l (T! - T2) 

(51) 
* o nl ¥ T2) 

called the blorthonoraallty telatlons. 

(E; Growth Functions 

Having established the necessary foundation, some important prop- 
erties of transition, expressed by various growth functions, now can be deduced. 
These growth functions include the amplitude and phase variations caused by the 
partial resonances of the driven with the driving Fourier components. Unlike 
the amplitude coefficients, they may vary rapidly with x^ and X2 over some parts 

of the wall but, for the particular boundary values under ccnsideration, will be 
almost independent of x*. The analysis now involves the expansion of each Four- 

ier component as a sum of products of the growth functions and the amplitude 
coefficients, which include the rapid variations with X3.  In this respect, the 

technique amounts to an extension of the method of separation of variables, 
which often is used for linear partial differential equations in certain situa- 
tions. Like the perturbation componentJ, the growth functions are obtained 
recursively, starting with initial growth functions ascertained from the bound- 
ary irregularities themselves. The higher growth functions are established 
recognizing a requirement tltat all amplitude coefficients must be regular in 
the complex R-plane, at least on and near the real R-axis. This requirement 
leads to growths with x} and X2 that can be much faster and larger than the 

amplifications predicted by ordinary linear stability theory, which overlooks 
such a requirement and therefore undoubtedly is incorrect for infinitesimal aß 
well as finite oscillations. Like the driving Fourier components, though, 
relatively few of the growth functions will Is important enough to require con- 
sideration. Insofar as has been observed, superposition of the terms with the 
dominant growth functions should yield motions which at least closely -•semble 
actual transition motions. 

The initial growth functions are determined from the differences 
between the boundary values of the Fourier coefficients of the first perturba- 
tion component and the boundary values of the initial amplitude coefficients. 
Thus, In the injection flow, the boundary values of both sets of coefficients 
are constants, yielding an injection growth function 
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(E) Growth Functions (continued) 

G**0 = I (52) 

which is constant throughout the transition region. For this case, the parame- 

ters of Equations (38) have the values AJJ0 = aja (k » 1,2) and Aj0 ■ c*10 « 0. 

However, in the fluctuation flow, the boundary values of the Fourier coefficients, 
being weak functions of ehe coordinates, deviate slowly from those of the ampli- 
tude coefficients, which are constants. This difference leads to a fluctuation 
growth function 

G*' = exp (bjj-^) (53) 

in which the fluctuation growth factors b^  (k = 1,7,3) are small negative real 

constants or zero  throughout the  transition region. In this case, if Che mean 
flow is  in the Ki-direction, the parameters of Equations (38) must have the 

values Aj = a^" - ibj , A^ = 82", A3" = 0, and c "" s c . Furthermore, their 

values also must satisfy the determinantal equation 

KP   ■'- O   K.:     Hi 

^k Ak "*■ io(rt'kAk * c ) ' 0 (54) 

deduced by substituting adjoining flow quantities Into Equations (22). Using 
the initial growth functions, ail Fourier coefficients of the first perturba- 
tion component can be expressed by products such as 

ula = u*aG*Q 
J    J 
, (55) 

plQ = pmGHO 

for the Injection flow and 

uj- = uJ-G^ 
(56) 

pl.: s pK.GKD 

for the fluctuation flow. Substitution of such products into Equations (22) and 
(23) or (24) yields Equations (38) and (39). 

All higher growth functions, for both the mean and the oscillation 
Fourier coefficients, are determined recursively from lower growth functions 
using essentially one general procedure. Several aspects of this procedure now 
are demonstrated on the oscillation Fourier coefficients of the second perturba- 
tion component, which are particularly important in transition« First, sub- 
stituting Equations (55) and (56) into Equations (29) or (34), the oscillation 
driving coefficients are expressed as 
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(E) Gf wth Function! (continued) 

£Jk ' ^^ (57) 

in terms of the driving aaplitude coefficients 

f jt ■ «r^ * "J6^ (58) 

and the driving growth function 

Gad m GKabHB (59) 

Second, to adequately meet various requirements, the driven Fourier coefficients 
are expanded in series such as 

u^ - ufG** ♦ z Jufn1 

(60) 
pVY . pdr^ore ^ E hTpXTHT 

Here, the driven amplitude coefficients u^ and p(*$ may vary with x. and x2 only 

slowly like the other amplitude coefficients, the resonance coefficients hT are 
T constants, and the resonance growth functions H may vary rapidly with x^ and 

x,. Third, substituting such series into Equations (35) and (36) and recalling 
XT    XT 

that u. and p  are defined by Equations (40) and (41), the following relations 

are obtained: 

(^-lufajB.u^G-B.ufG^ 

« E hTu^T [HT
k ♦ l(a*ß - A^T)HT] 

u/jg •  pcj^l - p^6jk ♦ ^(♦«g ♦ t^) - 0 (61) 

(tpc^uf . lo^af . 4tk)G^ * Jfi'l 

± --E h1^ [H^ ♦ KajS - A^T)HT] 
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(Ei Growth Functions (continued) 

uaC(xP) = 0 1 .   \ At 4 
J   k 

u?e(x^) = 0 (62) 

.QTD oo. 
p"0Uy)  = 0 

Here, a0^ = a,  ♦ a, ^ and c^^ = c 8 in accordance with Equations (27), whereas 
k    k    k 

A.  are the proper values of Equations (40) and (41) for c = c °. Also, for 

the particular Fourier coefficients under consideration, 

G!k= bfGQr' (63) 

where b*° = h^°t  so that the left members of the second and fifth equatior 3 vary 

with x. and x« about as slowly as Ga*.    Fourth, recognizing that the right mem- 

bers of these equations also must vary with x, and X2 about like G**®, the 

conditions 

H*k + ii&^  - A^T)HT = e'lG0® (64) 

are imposed, whereupon Equations (61) reduce to 

a,,   - u.^U,   - U u, •  = tf, vjk        j    k        j k jk 

*t ■ iuf A°9 • ^'r hIuf ^ 

^ = 0 

ipc    uj    + i^^    + aljk>k - -L h ^kek 

where Aj-P = a?^ - ibkP*  F^-th, to achieve another simplification, the driven 

amplitude coefficients themselves are expanded in series such as 
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(E) Growth Functions (continued) 

Uj « L g Uj 

P^ « . gTp^ (66) 

T where the driven coefficients g are slowly varying functions of x and x2 (or 
are constants*). Sixth, substituting such series into Equations (65) and (62;, 
neglecting the derivatives of gx (if any), multiplying the resulting differential 
equations by the adjoint amplitude coefficients, integrating the sum of the re- 
sulting scalars over the transition domain, and applying Equations (42) through 
(51) as necessary, the following expression for g is derived: 

Here, as already indicated, A?D along with c01'0  are constants determined by the 

XT boundary irregularities alete, whereas A^ vary with R which in turn varies with 

X} and «2» In particular, for each value of T, A^ can equal A^ at some point 

in the complex R-plane, causing a pole In g^ unless the right member of Equation 
(67) vanishes at that point. Indeed, for the smaller values of T and various 

typical values of A?B and c0^, the pole could occur on or near the real R-axis, 

strongly contradicting the stipulation that gT is slowly varying. Therefore, as 
the seventh step, to avoid the pole, the condition 

,XTfa3) d(x 'jkIjk; dlxm hT • j (?&??) dUJ (68) 

is imposed at the complex value of R where Aj^ = A^ (when c^ = cap). Otherwise, 

the value of g is not considered furtner, since it generally snould be small 
T enough to be neglected.  Indeed, just the value of h for T = 1 probably will 

suffice. Applying Equations (49), (50), and (58), the resonance coefficient 
in the present case may be expressed as the ratio 

hT = {"?$<*' »f 4Vhv/.|" (WfK' 
D ' D 

*At present, due to a lack of on appropriate expansion theorem for the proper 
tjt functions, the possibility of these coefficients being constants is uncertain. 
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(E) Growth Functions (continued) 

which probably will have an order of r.agnitude of unity at the lower values of T. 
Hence, the driven Fourier coefficients, expressed in full by Equations (60), 
probably will vary nostly like the single-tenr approxinations 

W =.. , T >.TUT u. ^ n u. H 

(70) 

p  - h p u 

where T = 1 and hT ~ 0(1). 

In contrast to their inherently tediout derivation, the resonance 
growth functions display some important properties of transition in a 
simple way. ror the case just considered, integrating Equations (64), these 
functions have the gentrai fonr.s 

c 

where the resonance kernel KT is defined as 

K (xk) = exp ii k ak - V(xk)] dxj (72) 
' o 

T T 
and the integration constants J. are assigned so that H is bounded upstrear. 

from the transition region.  Presently, to describe the principal properties of 

these functions, the variation of HT with x1 along the line X2 = x-, ■ 0, 

with '■he mean flow in the positive Xj-directlon, is considered. For convenience, 

the point x^ = 0 is located somewhere in the transition region, with the inte- 

gration progressing from the laminar region at x^ -* -co to the turbulent region 

at x^ - +co. To facilitate the integration, deformations of the contour in the 

complex x,-plane and therefore in the cor.plex R-plane are allowed. Under such 

conditions, Equations (71) and (72) reduce to 

HT(x1) = e]  [J Vuj^'Updx* [KT(x1)^ (73) 

and 

K1^) = exp {ir 1 [a]    - Al
T(xJr)1 dx^j (74) 

o 
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(E) Growth Function« (continued) 

while the driving growth function becomes 

(f^Cx^ « exp (bf Xj) (75) 

Here, a^ and b* are real constants determined by the boundary Irregularities, 

XT 
whereas Ä| Is a complex function of R and thereby Is a slowly varying complex 

function of x^. Hence, depending on the Integration contour, f* usually Is an 

oscillating function of R and thereby x^. As Is ordinarily true, b^' is assumed 

to be very small, allowing G0^ to remain near unity throughout the transition 
region. Also, to concentrate on the most Important situation, Just the value 

XT 
of Aj for T ■ 1 Is considered furthert Besides other distinctions, this value 

often can equal a^ on or near the real R-axis and therefore on or near the real 

x^-axis, usually at two different points corresponding to the two branches of 

T 
the neutral curve of ordinary linear stability theory. Because K usually Is 
oscillatory, the first main contribution to the integral in Equation (73) 

occurs in the vicinity of the first saddle point of K\ to be called the reso- 
nance point, which is the first point in the complex R-plane or the corresponding 

point in the complex xpplane where Aj ■ a^. Clone to this point, K remains 

T 
almost constant, while the Integral and therefore H often grows about as fast 
as %i  varies, causing a correspondingly fast growth of the driven Fourier compo- 

nent.  In comparison, ordinary linear stability theory would predict a variation 

T    -1 
somewhat like [K (X})]  and therefore almost no growth in this region. Further- 

XT 
more, because A  varies only slowly with x^ and the resonance point often Is 

located on or near the real xpaxis, the fast growth often persists over a long 

Interval of the real xj-axis, yielding a much larger total growth in that region 

than would be indicated by ordinary linear stability theory. For example, the 
driven Fourier component sometimes can grow by a ratio of the order of 1000 noar 
the resonance point alone, such growths evidently being the principal way t.hat 
"disturbances" are "introduced" into the boundary layer. Immediately downstream 
of the resonance point, the integral remains relatively constant, allowing H^ v.o 

T    ■ I 
vary about like [K Cx|)]  and therefore somewhat like the variation considered 

in ordinary linear stability theory. However, even this resemblance to the 
latter theory usually will be obscure, since various other growth functions then 
will tend to dominate the motion. Further downstream, a second saddle point of 
T XT    fyfl 

K , where A^ « a^ for a second time, may be encountered. In this region, the 

Integral in Equation (73) will begin to grow substantially again, while the fac- 
r T       *l T 

tor [K (xj)]  will begin to decay. Thereafter, as the net result, Hl  will steadily 

decay and ultimately vanish, but at a alower r te than predicted by ordinary 

■31- 



(ü) Growth Functions (continued) 

iinsÄT stability theory. Along %rtth all grcvths and decays, soae phase varia- 
tions and therefore frequency modifications also occur, affecting the Fourier 
synthesis of the whole notion and perhaps producing some  appreciable phenoaena 
of a subharaonic and/or superhanaonic nature (in addition to the harmonic motions 
from other Fourier components). Ordinarily, the resonance growth functions of 
both two-dimer.p'onal and three-dimensional partial resonances, wherein 

«2° * 0 a^d «2 ^ 0' resPectively» are important. The former resonances tend 

to manifest first, since the two-dimensional neutral curve occurs first, whereas 
the latter resonances tend to amplify roost, since the three-dimensional proper 
values vary most slowly with downstream distance. 

Proceeding in the same way, the mean Fourier coefficients of the 
second perturbation component also can be estimated. However, these coefficients 
probably will be negligible in most boundary layers of Interest. For example, 
substituting Equations (56) into Equation (30), the mean driving coefficients 
for A « IB are 

FIk " FjkG8 ov 
where 

Also, expanding the driven Fourier coefficients in series such as 

Uj ' UjG" + T'  ^"j1"1 

PV « PäGS +E hTpXTHT 

and substituting these series into Equations (31) and (32), the resonance 
coefficients 

hTx  iD
(^kFJkWV (80) 

eventually are Deduced^ which must be evaluated at the complex values of R where 

Ak = "l2bk (with c =0). Moreover, the resonance growth functions becoine 

HT(xk) = e^ [jj + J k KT(x*)G5(x*)dx*l [^(x^f1 (81) 

where 

KT(xk) « exp [-lJXk 4T(xJ)dxJl (82) 
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(I) Growth Functlooi (continued) 

and J? ar« conitanti chotan to kaap H7 bounded upctraan* Again, alnca G** ramalnt 

T T  " naar unity, tha aaaln parts of H ara acquired naar tha aaddla points of K , 
which ara at tha coaplax values of ft where A^T > 0 (with cx • 0). But now the 
saddle pciata probably are far ttam the applicable segaent of the real R-axls 
or psrhaps do not exist, leading to only snail variations of HT across the tran- 
sition region* Starting fron Equations (55), for Ä « la, similar relations are 
deduced» except that tha resonance coefficients then must be evaluated where 

A*7 » 0 rather than where A^T - -iftj.** (To funy clarify such details, actual 
calculatlona ara desirable.) 

In contrast, the mean Fourier coefficients of the fourth pertur- 
bation eoaponant apparently can be significant in mny aituatlons« In this case, 
considering Juat one dominant term of the seco~4 perturbation component, dis- 
tinguished by the superscript T0, the mean driving coefficients are 

where 

']k - tfy? (83) 

PJk - h^opo^o^o (84) 

C0 • H1«!^0 (85) 

while the driven Fourier coefficients have series such as 

üj • U^1 + r hTu}THT 

(86) 
pV . pdcd + s hrp\Tn7 

However, in place of Equation (63), the driving growth function now has the 
gradient components 

Gd. - HW0
 + H1^ 

which can be approximated aa 

^k * 1(AkT0 * T^0^ (87) 
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I (E) Growth Function« (ecntlnu«<f} 

I since G0* will be much smaller r.han RTo in the Inportsnt reglone. Coneequently, 
I  the resonance growth fynctlans arc required to satisfy 

H^k - i^H
1 - ejc*1 (88) 

and the resonance coefficients become 

^'J.^Jk^V <89) 

XT  \T  "AT 
which are evaluated at the complex values of R where A.    m \ 0 ' K 0  (with 

c « 0), Finally, integrating Equation (88),, the resonance growth functions 
have the general forms 

H1^) » ej [Jl + JXk KT(x*)Gd(xJ)dx*] [KT(xk)]"
1 (90) 

o 

where 

KT(xk) - exp C-lJ
Xk A^T(xJ)dx*l (91) 
o 

and J^ are constants chosen to keep HT bounded upstream. Here again, the 

saddle points of KT, located at A^T ■ 0 (with cx • 0), probably are too far fro« 

the applicable segment of the real R-axis to be influential« However, unlike 

G in the preceding case, Gd may increase rapidly and greatly along 

that segment, apparently causing significant variations in HT and therefcre in 
the driven Fourier coefficients. (Again, for clarification, actual calculations 
are desirable.) 

Similarly, the oscillation Fourier coefficients of the third, 
fourth, and perhaps higher perturbation components may be Important. For 
example, considering the fourth perturbation quantities from two dominant terms 
of the second perturbation component with the indices 1 and 2, the oscillation 
driving coefficients are 

fVY a fd cd (92) 
jk  ljk Kyi) 
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(E)    growth Fwictlon» (contlnutd) 

wh«r« 

t]k - h1^^^ + uj^l) (93) 

G«5 - HTlHT2 (94) 

Again, th« <lriv«n Fouritr cotffici«ntt havt ttriti such «• 

uJY - uJC1 + E hTu}THT 

p^V . p^ + E hVTHT (95) 

while the driving growth function hat th« gradient cenponenta 

trttich can be approximated as 

0!k ■ '^+ *kl2 - v1"1 ■ ^2B2)G,' (,s) 

Thus, eventually,, the reaonance coefficients are evaluated as 

hMD
(5Jk^)d0Sn) (97) 

at the coi^lex value of R where /£* - A^Tl + A^2 - aj101 - »I2*2 (with 

c   " eal^l + ca2P2), «nd the reaonance growth functions «re expressed as 

where 

HT(xk) - ej CjJ +pt KT(xJ)Gd(xJ)dx^ CKT(xk)l'
1 (98) 

KT(xk) - exp {ifk C^1B1 + S/2 . ^(x*)] d^} (99) 
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(E) Growth Function! (continued) 

and  j£ are chosen to keep H bounded upstream. Here, as in the crlglncl 

example, the saddle points of KTf located where A^
T « aj101 ♦ *J2^2 (with 

c^ » c^l^X t- cQr262)t can occur en or near the real R-axls, greatly increasing 

the growth of HT« Also, as in the preceding example, C&  itself can increase 
greatly along that axis* Hence, thehe tendencies together can yield an 

exceptionally large growth of HT and therefore of the driven Fourier coeffi- 

cients« However, the actual values of these coefficients, which contain the 

factor (e)^ where t is much smaller than unity, should remain within the same 
order of magnitude as the dominant lower perturbation quantities (at least in 
the transition region of the boundary layers of practical interest)• 

In general, the growth functions are bounded throughout the boundary 
layer. In fact, as easily seen, these functions can grow Indefinitely only when 
some proper values have special constant values for unlimited downstream dis- 
tances, which can happen only In certain truly parallel flows of unlimited length 
(such as certain Poiseullle flows and asymptotic suction boundary layers). Con- 
sequently, Fourier components with amplitudes increasing indefinitely with down- 
stream distance, called secular terms, ordinarily are not encountered«* As a 
result, the perturbation series use^ here generally shcv.d converge better than 
analogous series would in the more familiar problems of uhe classical theory of 
nonlinear oscillations, where secular terms often are encountered unless some 
other approximation scheme is utilized (which may entail an asymptotic aeries 
with uncertain convergence properties)« Moreover, the perturbation aeries should 
apply particularly well to the initial phase of transition, which Is the main 
objective in many analyses (especially those concerning laminar flow control 
techniques). For example, for very small boundary Irregularities, Just the first 
two perturbation components may be sufficient to describe the principal distur- 
bance motions throughout both the laminar region and the beginning of transition 
and therefore to relatively large Reynolds numbers. (Such motions, though, will 
differ significantly from those predicted by ordinary linear stability theory«) 
Likewise, for somewhat larger boundary irregularities or Reynolds numbers, Just 
a few more perturbation components may be adequate. Furthermore, the perturba- 
tion »srles 6'nould adapt well to automatic computation on an electronic computer, 
enabling a rather large number of perturbation components to be evaluated when 
needed.  In particular, the growth functions, which are the principal elements, 
can be obtained recursively by rather simple numerical integrations. Thus, for 
many purposes, the perturbation series should be quite satisfactory« 

However, in the final phase of transition and the ensuing turbulence, 
the computations become more complicated.  In particular, as the perturbation 
order increases, the normalized growth functions increase (retarding the con- 
vergence), while the Reynolds numbers at which these functions appear also 
inctease 'assisting the convergence). Meanwhile, through a rather Involved 

♦Specifically, secular terms can occur only when, for an indefinite downstream 
distance, Che spacp and time frequencies of one or more driving oscillations 
nearly equal those of one or more points on the neutral curve of ordinary 
Mnear stability theory.  Hence, such terms may exist only if the Reynolds num- 
ber is nnar or above the stability limit of that theory. 
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Ceontlmt«d) 

Mqucnc« of r«Utioatbipt dcptnäiiis on th« «ctuttl boundary irxtguUrltle», « 
partial «Kntaeactios «€ lover porturtatlon ccapenaiiti by hlghtr parturbaCior 
coapooants avantualiy appaart and ttwn nay pravail (furtharii« th« convargerxa 
but hindarlag it« «valuation), NavarttitUM, additional analysa« and actual 
calculation« «tatld clarify th« «Mnputation« and «y «usgast a «or« convanient 
•aria« or axpni««ion. A« on« «£MpIav «OM infocnation about tha convarganea, 
and partMp« «oaa u«aful approainatioa«. «igbt b« doducad by coaparine th« ^^ 
availabla fron tba fir«t parturbation eonponont with th« «n«rgy indicated by 
tha parturbatioo «aria«, (Parhap«, "jy thi« nean«, an approxiaation of tha 
growth of turbolane« anargy with dewnatraoa distanca, anabling an «stination of 
th« «kin fslctioo, could b« ««tabli«h«d.) A« «aotoar «xaapl«, fuvthar inaight 
into th« eonv«Kg«oc«( and into «quilibratad tucbulanca aa wall» night b« gained 
by oxtanding aa alaMntary turbulrac« nod«I propoaad by Kaats (Rafaranca 1 )* 
ao aa to iaclud« on« or nora doniaant forcing oacillationa fro« th« firat par- 
turbatioo conponant. Otharwia«, an aayaptotic a«ri«a analogoua to thoa« utilis«d 
in th« claaaical theory for uaakly nonlinear oacillationa night b« obtainable and 
in «OOM way« uaaful. Houaver, auch a aariea, beaidea covering the pertinent 
boundary irragulaiitiea, ahould apply to aoderately large nonlinear oacillationa, 
Ttaa, at the relevant condition«, it night diverge or at leaat converge too poorly 
to be desirable. Conjointly, it should be noted that any deaand for an aayaptotic 
aeriea will be leaa coapelling in a boundary layer of liaited length than in 
proceaaea of unlinited duration (which are the nain subject« of the classical 
theory of nonlinear oacillationa). Conversely, dependii« on the unifornity of 
the actual boundary irregularities, a reliable aayaptotic series night be appro* 
priatc for a truly parallel flow, in which secular tern« aonetiaea can occur. 
However, a suitable auaaation of the perturbation aeriea already developed then 
night be obtained and aanaged nore easily than an aayaptotic series (especially 
aince tha claaaical theory haa not yet been extended to three-dinensional notions 
of th« kind concerned here). In particular, in a truly parallel flow with 
periodic boundary irregularities, the growth functions degenerate to quite 
siaple expressions, «uggeeting that an approxiuate or exact «unaation of all 
nonaecular and aecular tern« night be established and investigated rather easily 
(especially with the aid of an autoaatic coaputer). Further expl ration of such 
aspects of the theory are deferred for later paper«. 

(F) Transition Mechsnisro 

According to the resonance theory, the motion comnonly called 
transition ii merely a part of a sequence of partial resonances beginning in the 
laminar region and continuing in the turbulent region. In general, this sequence 
may be excited by any of a large variety of combinations of boundary Irregulari- 
ties at the wall surface and in the adjoining flow, and it altogether may con- 
tain numerous partial resonances of several different kinds, yielding a whole 
motion which is indeed diverse and complicated. Nevertheless, as already indi- 
cated, the individual partial resonances are quite simple and, in fact, can be 
analysed and calculated in a recursive manner by available techniques. In par- 
ticular, the dominant motion from each significant partial resonance can be 
represented by just the product of three elementary variations, namely: an 
oscillation expressed by the phase function, an amplification ami slight oscil- 
lation in the downstream direction expressed by the resonance growth function. 

*This model i« an extension of instructive finite-disturbance models introduced 
by Meksyn and Stuart (Reference 43; and Stuart (Reference 31). 
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(F) TjWBm9n M^cfaHtfw (continued) 

and a distribution across the boundary layer expressed by the resonance amplitude 
coefficient» Also, the sverall oagnitude and phase of this aotlon are detenlned 
by the product of the applicable power of the perturbation parameter and the 
applicable resonance coefficienct. Furchermore, typical sequences of partial 
resonances, which might be adequate for analysing and predicting transition 
in an approximate way, can be constructed from just a few suitably chosen par- 
tial resonances* 

When the boundary Irregularities have wide spectra of Fourier com- 
ponents, as in most actual boundary layers, the partial resonances generating the 
second perturbation motions tend to become noticeable somewhere near the critical 
Reynolds number of ordinary linear stability theory and theresfter to manifest 
more frequently and strongly* Initially, the dominant driven Fourier components 
are mainly two-dimensional, with wave fronts about normal to the mean flow direc- 
tion; but eventually, they are mostly three-dimensional, with wave fronts in all 
directions* Somewhere after the beginning of such phenomena» the partial reso- 
nances yielding the third and fourth perturbation motions tend to becoae signifi- 
cant and thereafter to appear more frequently and strongly« In this case, the 
dominant driven Fourier components are mostly three-dimensional, and they also 
supplement the second perturbation motions, substantially increasing the intri- 
cacy of the whole motion* Further downstream, the partial resonances providing 
the higher perturbation motions may become important and further complicate the 
whole motion. Thus, in general, the partial resonances tend to manifest some- 
what like a gradually developing avalanche, initially generating a few weak 
simple motions in the laiulnar region and eventually producing numerous strong 
complex motions in the turbulent region. Oth .vise, within this overall trend, 
they tend to appear partially randomly owing co the randomness of the boundary 
irregularities* In the whole process, several mean Fourier components becoae 
significant, causing a rather gradual distortion of the mean flew* Also, the 
oscillation Fourier components often vary abruptly as a result of the rapid 
growths near the resonance points, causing burst-like phenomena. In the synthe- 
sis of the component motions,, various other phenomena that are observed in 
experiments can be expected.  For example, the non-exponential amplifications 
of partial oscillations reported by Klebanoff and Tidstroro (Reference 37) seem 
to be L ;presentable by merely superpositions of growths from successive pertur- 
bations* Likewise, considering the generality of the present theory, any special 
phenomena that are proposed and verified in other theories on instability, tran- 
sition, and turbulence probably can be found* For example, Insofar as they 
actually occur, the bent vortices suggested by Theodorsen (Reference 54) and 
the strearawise vortices hypothesized by Lin and Benney (Reference 42) probably 
ara encompassed by the present theory** 

Within this overall concept, ordinary linear stability theory 
pertains to Just the simplest part of the second perturbation motion* In par- 
ticular, that theory not only ignores the part of the second perturbation motion 

«Notwithstanding some resemblance, the Lin and Benney theory differs from the 
resonance theory in several respects. For example, the former theory involves 
fundamentally different perturbation and growth schemes. Also, it should b« 
noted, some experimental observations suggesting streamwlse vortices, including 
cata cited by Lin and Benney in support of their theory, may be attributable 
instead to crossflow vortices caused by small crosswise pressure gradients. 
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(F) Traniitlon MecbaniKi (continued) 

representing the introducing of disturbance« into the boundary layer but also 
misrepresent« the eventual dlalnutlon of that notion and completely neglects ail 
other perturbation »otloti«. Al«ot the original form of the resonance theory 
Introduced by Raets (Reference 1) pertains mostly to that part of the fourch 
perturbation motion which is generated from the motions of the linear theory 
(by total rather than partial resonances). Moreover, an energy exchange 
mechanism claimed by Benney and Lin (Reference 27)* mainly amounts to an 
eventual counteraction of a part of the second perturbation itotlon by a part 
of the sixth perturbation motion. 

Conjointly, an Implication by Benney and Niell (Reference 28) 
that such an energy exchange mechanism generally prevents individual partial 
resonances** from being prcalnent appears to be Inappropriate. Their anelysis 
considers an elementary simulant differential system which, due basically to 
irrelevant boundary conditions, really resembles the differential system 
of a laminar boundary layer with a slight irregularity in the initial velocity 
profile but no irregularities at the wall surface and in the adjoining flow. 
As a result, the analysis involves Just an autonomous system whereas, to 
properly typify "he pertinent boundary irregularities, a non-autonomous system 
would be essential. In such a case, as known from variou i numerical integra- 
tions of the boundary layer equations, the distortion tends to decay quite 
rapidly in the downstream direction — there being no noticeable partial 
resonances. In fact, this tendency has been utilized for calculating stagna- 
tion profiles of general boundary layers (Reference 45). Hence, although 
their analysis does Indicate a suppression of certain partial resonances by an 
energy exchange mechanism, a similar suppression does not necessarily prevail 
at transition. Instead, a quite different ami usually weaker Interaction, mani- 
festing sequentially like the higher perturbation motions and depending sensibly 
on the perturbation parameter, probably appertains. For example, an individual 
Fourier component of the second perturbation motion may grow considerably before 
any opposing Fourier component of a higher perturbation motion becomes significant, 
and the suppression then will depend substantially on the perturbation parameter 
(and various other quantities). Indeed, such a trend seems to be discernible in 
the streamwise grewths and decays of partial oscillations measured by Klebanoff 
and Tidttrom (Reference 37). Thus, in certain circumstances, individually strong 
partial resonances apparently are possible. Moreover, wherever discrete vortices 
are formed, such resonances evidently are important. 

Since the partial resonances tend to become significant in a 
somewhat gradual manner, transition Itself cannot be defined nor be located 
very distinctly. In most boundary layers, the so-called transition Is merely 
a partially random succession of partial resonances that are stronger and more 
frequent than in the laminar flow but are weaker and less frequent than in the 
turbulent flow, these distinctions being quite arbitrary. Thus, in general, 
transition as commonly recognized does not involve a distinct change in the 
fundamental nature of the motion. However, in some boundary layers, a region 
where some higher perturbation component first becomes significant may be dis- 
cernible, suggesting a distinct change. Otherwise, where a practical criterion 
is needed, transition can be regarded simply as the onset of an appreciable 
distortion of the mean flow. This criterion indicates the beginning of an 
appreciable Increase in the shearing stress on the wall surface, which is a 
main consequence of the departure from laminar flow. 

♦This claim appears to have been based on a doubtful argument published later 
by Benney and Niell, which is discussed in the next paragraph. 

**called apparent resonances in References 27 & 28. 
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^ Z£££liÜi£2 Mechanism (continued) 

In tha preceding analysis, for sinyllclty, the boundary irregu- 
larities were assumed to include just &  simple injection at the wall surface and 
a simple fluctuation in the adjoining flow. These irregularities introduced, 
respectively, a stationary and a traveling spectrum of Fourier components into 
the first perturbation component* As a result, the frequencies of some of the 
driving Fourier components formed from these spectra could resemble seme of the 
natural frequencies or proper values of the driven Fourier components and thereby 
could yield some significant partial resonances. However, similar frequencies 
and thereby similar resonances also can result from any of a large variety of 
other combinations of boundary Irregularities* For example, without altering 
the general nature of the whole motion, the Injection spectrum can be replaced 
by a more general stationary spectrum representing injection or suction through 
discrete areas or slots or representing wavlness or roughness of the wall sur- 
face* In this case, the main additional problem is the estimation of that 

spectrum, which requires only a linear superposition of products of the Initial 
aaplltude coefficients and the phase functions. Similarly, the fluctuation »pec- 
trum can be replaced by a more general traveling spectrun representing external 
turbulence or sound. In this case, also, the main additional problem requires 
only a linear superposition of basic functions, using compressible relations for 
the external sound.* In fact, the injection and fluctuation spectra together 
can be replaced by a single traveling spectrum with certain space and time fre- 
quencies. Sometimes, just the spectrum from a vibrating wall surface can 
produce a sequence of significant partial resonances. Likewise, the spectrum 
from a vibrating ribbon within the boundary layer, such as used by Schubaucr and 
Skramstad (Reference 48 } may yield partial resonances like those at transition. 
However, by itself, neither a stationary spectrum from the «Mil surface nor a 
traveling spectrum from the adjoining flow can produce important partial reso- 
nances within boundary layers like that considered so far, due to the restricted 
ranges of the natural frequencies in such boundary layers. 

Although generated In a similar way, the various dominant motions 
fron? a particular combination of boundary irregularities usually differ in 
several details. As one example, as already indicated, two-dimensional motions 
tend to appear first, whereas three-dimensional motions tend to grow most. As 
another example, the lower perturbation motions must occur first, but the higher 
perturbation motions may grow faster and also may become more numerous eventually. 
Along with such tendencies, the three-dimensional trends of the lower perturba- 
tion motions ove^ap the two-dimensional trends of the higher perturbation motions, 
diminishing any distinctness in the transition region. As a further example, 
special motions may result from the partial resonances in the more general bound- 
ary layers, such as Goertler vortices when the wall surface Is curved and cross- 
flow vortices when the adjoining flow is curved. (Unlike most motions, these 
particular vortices can be excited by Just a stationary spectrum of boundary 
irregularities at the wall surface.) Such special phenomena supplement the 
motions considered so far, and they may or may not be the more important, depend- 
ing on their intensity. Also, as an interesting but unverified possibility, the 

*An, wavlness or roughness of the wall surface complicates the boundary condi- 
tions for oach perturbation. However, in some cases, as an approximation, this 
complication probably can be neglected in the second and higher perturbations. 
In other cases, a wavlness might be handled conveniently as a periodic pertur- 
bation of the metrical coefficients of a curvilinear coordinate system. 
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(F) Transition Mechanism (continued) 

resonance amplitude coefficients representing the distributions across the 
boundary layer perhaps may include abnormal as well as normal proper solutions 
(such as are used in ordinary linear stability theory). The abnormal proper 
solutions might exist for certain singular proper values encountered in three- 
dimensional motions, and they might account for some observations (see Part G-3). 

When the basic flow itself is altered, several important changes 
can occur in the sequence of partial resonances. In the first place, the overall 
development of this sequence depends indirectly on the neutral curve of ordinary 
linear stability theory, which in turn depends greatly on the distribution of 
the basic flow velocity across the boundary layer. More specifically, an altera- 
tion ox this distribution modifies the relationship of the proper values to the 
local Reynolds number and the tlmewise frequency — thereby affecting the loca- 
tions, durations, and strengths of the partial resonances and also the space and 
time frequencies of the dominant oscillations. In the second place, the strengths 
of the partial resonances further depend on the rate of variation of the local 
Reynolds number with downstream distance. Thus, as the local Reynolds number and 
thereby the proper values vary relatively slowly or rapidly, the total gt > ths 
from the partial resonances become relatively large or small, respectively, 
shifting the position of transition accordingly. Such a trend apparently has 
been encountered in various experiments on bodies of revolution.* On the forward, 
central and rean»&rd parts of such bodies, transition has been observed at respec- 
tively lower, similar, and higher local Reynolds numbers than on essentially flat 
surfaces with locally similar basic flows, these discrepancies apparently being 
due in part to the differences in the rate of variation of the local Reynolds 
number.** When transition is suppressed by suction through the wa31 surface, 
the same trend may diminish the effectiveness of the suction, insofar as the 
rate of variation of the  local Reynolds number is decreased. However, unless 
the boundary irregularities including the suction variations are too large, this 
adverse trend ordinarly can be overcome merely by stronger suction, which other- 
wise tends to suppress the partial resonances. Furthermore, as already indicated, 
a concave curvature of the wall surface or a crosswise curvature of the adjoining 
flow may allow an additional class of proper solutions and thereby an additional 

*Al8o, such a trend evidently can aggravate any tendency toward transition 
near the leading edge of a swept wing. Specifically, if the nose radius is 
large enough to allow a sufficiently thick boundary layer in that region, 
the totfl growths along the stagnation line in the spanwise direction appar- 
ently can become excessive as a result of the slow variation of local Reynolds 
number and the long distance in that direction together with other adverse 
factors (such as a relatively small minimum Reynolds number on the applicable 
neutral curve, a roughness due to dust and 'nsects, and usually an initial 
turbulence from a fuselage or other adjoining surface). Furthermore, such 
a trend may help explain an unresolved disoepancy between the observed and 
calculated stability limits for the crossflow vortices on a rotating disk. 
So far, the observed value has appeared to be much higher than the calculated 
value, perhaps partly because the Reynolds number varies too fast to allow 
detectable partial resonances to occur near the actual stability limit. 

**This trend also is influenced by differences in the neutral curves due to 
the differences in the wall curvature. 
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IF) Transition Mechanism (continued) 

type of motion, in the form of Goertler or crossflow vortices» to exist. According 
to the resonance theory, such vortices grow downstream in a different way than in 
ordinary linear stability theory. 

Insofar as the resonance theory is valid, the main techniques for 
preventing transition are quite obvious« In the first place, ail boundary irregular- 
ities--including the wall wavineas and roughness, the external turbulence and sound, 
any irregularities due to suction through discrete appertures, etc.--should be 
minimized. Thereby, all perturbation motions will have miniaun magnitudes, the 
higher perturbation motions being suppressed the most. However, among the Fourier 
components of the boundary irregularities, just those with the frequencies allowing 
strong partial resonances need to be diminisird, those with other frequencies being 
inconsequential. In the second place, the basic flow should be controlled so as 
to shift the local neutral curves and thereby the important partial resonances to 
the highest possible local Reynolds numbers, especially in those x«gions where tran- 
sition otherwise tends to occur. In some cases, adequate control can be exercized 
merely by appropriately choosing the wall surface contour and the adjoining flow 
distribution. In certain cases, such control might be attained by coating the 
wall with a properly selected and sufficiently uniform viscoelastlc layer so as 
to shift the strong partial resonances to higher local Reynolds numbers. In many 
cases, the best control is achieved by applying sufficiently strong and uniform 
suction through the wail surface. In the third place, as necessary and possible, 
the boundary layer thickness should be reduced so as to complete the prevention 
of strong partial resonances. In general, this reduction can be attained bast by 
sufficiently strong suction. Such aspects of the theory, particularly the question 
of whether laminar flow can be maintained indefinitely in the streamwise direction, 
merit much further analysis. 

(G ) Calculation Techniques 

To apply the resonance theory of transition, mainly the basic 
flow and amplitude coefficient systems must be solved, the remaining calculations 
being relatively minor. Since each of these systems contains several simultaneous 
partial differential equations with three independent variables and also entails 
either an elliptic boundary value or a proper value problem,exact solutions neither 
are possible nor would be practical by available techniques. However, the whole 
analysis purposely has been developed so as to exclude all rapid variations in the 
*l  and X2 directions from these systems. Consequently, merely by applying approxima- 
tions analogous to the conventional boundary layer assumptions, each system can be 
reduced without excessive error to a much simpler system that can be solved in a 
practical manner. 

(1) Basic Flow 

The basic flow always must be ascertained fi~st, since its 
velocity components U^ constitute the variable coefficients of the amplitude 
coefficient systems. Unlike the other systems, its differential system (Equations 
(7) end (8)) is nonlinear. However, upon eliminating #9^, f?^, and fj?^, Equations 

(7) reduce to the steady continuity and Navier-Stokes equations 

"M ■0 

(100) 

PUj0,kUk ■ -^j * ^j,kk 
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(1) Baalc Flow (continued) 

vhich can be approxlaated satisfactorily by steady laainar boundary layer equa- 
tions. Thus, assigning the Mgnitudes 

Jtj ~0(n'1) X3 -0(1) 

( )  ~0(n) ( )>3 ~0(l) 

(101) 

Uj~0(l) u|-0(u) 

p-. 0(1) Po-0(l) 

where J « 1,2 and p, « 1, and retaining Just the doainant terms, Equations (100) 
reduce to 

^^•-^♦^,33 (io2) 

P03 ■ 0 

where J ■ 1,2 and k « 1,2,3. When the pressure does not vary with x^ and X2 and 
the aean flow is in the x^-direction, as was assumed in ouch of the preceding 
analysis, the whole approximate system is 

(103) 

and 

Uffl * üOf3 . 0 

P<ü?.lü? * "l^ ■ ^1,33 

uj - U^ - 0 (X3 ■ 0) 

u?« w? (x, - -) 
(104) 

where Wj* is a given positive constant. 

In most of the preceding analysis, merely a dimensionless 
similarity solution of Equations (103) and (104) was involved. In this solu- 
tion, if the boundary layer begins at xj * 0, the reference length and velocity are 

A ■ Xj/R 
(105) 

T- Wj 

where the local Reynolds number is 

R- pAT/^- (px^J/^i)172 (106) 

Also, the similarity coordinate z is 
z * X3/A (107) 

and the similarity stream function X(z) is defined by 

Uj « (ATX) 3 

uS.-urx,'.! 
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(1) Ba»ic Flow (continued) 

Substituting Equations (108) into Equations '103) and (104), the approxlaate 
systea degenerates to the ordinary differential systea 

2X,n  + XX" ■ 0 (109) 

and 

X(0) ■ X» (0) »0 
(UO) 

X'in)  - 1 

whose solution is the well-known Blaslus profile (see, for example, Schllchting, 
Reference 47). In the resulting boundary layer, as evident from Equation (106), 

1/2 R varies like x^ '   , allowing the duration of the partial resonances to increase 

as Xj increases« As a result, the partial resonances t«nd to persist for rela- 

tively long distances in the transition region and even longer distances in the 
turbulent region, causing corresponding large amplifications. 

(2) Initial Amplitude Coefficients 

Knowing the basic flow, the initial amplitude coefficients 
are obtained from Equations (38) and (39), which constitute an inhomogeneous 

linear differential system with variable coefficients. EMnrlnating <p^, i^, 

and Wjk, Equations (38) reduce to 

(in) 

where j,k = 1,2,3. These equations are simplified by observing Relations (101) 
and the additional magnitudes 

<,cK~0(l) 

(112) 
<,PH~0(1) 

in most of the boundary layer while also necessarily allowing the alternative 
magnitudes 

uj , ~0(tr1/2) u!J , -0(1) 

1 w        i/o (l13J u? ->. -OCu"1) uH   ~0(^1/2) 
j,33 3,33 
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(2) Initial itaplltude Coefficients (continued) 

In thin sublayers, where m ■ 1,2,3 and J « 1,2. Thus, retaining just dominant 
terms and some synmetrlslng minor terms, the exact system degenerates to the 
approximate ordinary system 

l"X + %3 » 0 

IPUJUX + cH) + PUjf3"5 + iP^J 

' ^UJ,33 + i2"h$ - uj« (114) 

lpu
3(AkUk + cK) + P^3 + 1PHA3 

" li(u3,33 + i2u3f3^ " u3^0 

and 

*,   0. ■ H 
vm 

%<0 m K 
vm 

P (xn) m 
H 

(115) 

where j,k « 1,2 and m,n « 1,2,3. The dlmenslonless quantities, distinguished 
by the overscrlpt A , are chosen as 

p - p/p ■ 1 1 « M./PAT = R"1 

«S-AJA CH  .  cH^/2» 

^n " VA 

"S - US/T vj - W 
m       m *: • w 

pH-pH/pT2 %* - qK/pX2 

(116) 

Substituting these quantities and omitting the overscrlpt, as done hereafter, a 
dlmenslonless system Identical to Equations (114) and (115) Is obtained. 

For many purposes, an alternate form of Equations (114) and 
(115) Is preferable. This form Involves the parameters 
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(117) 

(2) Initial Amplitude Coefficients (continued) 

a - (A^AJf ♦ A§A5)I/2 

P = (a2 ♦ lpac/V)1/2 

ac = AjW° ♦ AJW® ♦ cH 

where Re(a), Re(0) > 0 and the new variables 

ou = A^WJ - uj) ♦ A2(W2 - U|) 

»C ' A2(wl "  l,l)  " Al(w2 ■ ü2) 

üü = lAjuJ -  lAjliJ (118) 

9 * "3 

P   -   P 

which are regarded as functions of just the coordinate 

z = x3 (119) 

since Equations (114) h^vs» only Xj-derivatives.    Thus, an elimination of uj, 

u^, and pH yields the pxincipal equation 

iv  »   .,/     HI       /   2        2  .   ,   2.   M (p      ♦  lA-ycp       -   (or    ♦9    ♦  6\  )(p 

-i2v(a2 ♦ 32 ♦ 2Y2)cp,  ♦ (a2 ♦ v2)(g2 ♦ Y2)cp (120) 

= -i(pa/u) {u[cp" ♦ t2Y(p,  - (a2 ♦ Y2)cp] - ""^ 

with the conditions 

cp(0) = v5 cpMO) = -iA*vH 

<r,(*>)   = W§ fn'(™) = -iA^wH 
(121) 

1,2,3.  Likewise, another eliminatloi of pH alone supplies the supple- 
mental equation 

O) o" * iZya,*   -   (p2 ♦ Y
2

>UJ ♦ i(po'/u)uuj « -  i(pry/^)CV (122,) 

with the conditions 

-46- 



(2) Initial AwplltwU Coefficient» (continued) 

«»CO) « lAjvf - iAjvJ 

«U) - Ugyf - iAjwJ (123) 

Also, other eliminations provide the auxiliary relations 

Or2uJ - lA^o,' ♦ IYCD) - iAj«, 

2 K K H (l24) 

o Uj « iAjCtp'  ♦ ivcp) ♦ lAju. 

Finally,  the last members of Equations (114) and (115) are expressible as the 
equation 

p'  ♦ iyp - ü[c?M ♦ ^vcp'  -  O2 ♦ v2)<F] ♦ ipouq) (125) 

with the condition 

p(-) « qH (126) 

In this form, cp is obtained first, independently of all other unknowns, after 

which uu and p and then u* and u^ are evaluated as required. For some applica- 

tions, u^ (m « 1,2,3) but not pH are needed, the system for p then being 
omissible. 

(3) Resonance Amplitude Coefficients 

Applying similar siasplifications, the resonance amplitude 
coefficients are evaluated from Equations (40) and (41), which constitute a 
homogeneous linear differential system with variable coefficients.  In fact, 
replacing the superscript K by X and the non-trivial boundary values by zeros, 
all relations of Part (2) above also can and therefore will be ueed for these 
coefficients. However, due to the difference in boundary value«, the initial 
and resonance amplitude coefficients themselves differ in a fundamental way. 
In particular, the latter can be non-trivial functions, called the proper func- 
tions, only when their parameters have singular values, called the proper values. 
Furthermore, because the boundary values in the adjoining flow now vanish, the 
alternate system in Part (2) now can be simplified further merely by substituting 
the new variables 

(j^ ■ <p expdyz) 

u^ =« u) exp(ivz) (127) 

p^ « p »xp(l-yz) 
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(3) Rcaonance Aaplitude Coefficienf (continued) 

The resultiiq; syttea vith Che Asterisks oaltted is Identical to Equations (120) 

through (126) with y equal to zero« Consequently, A£ can have any real value, 

leaving at aost just AJ and A| trlth true proper values, which depend on Just R 

and cX. In fact. If the basic flow is In the x^dlrectlon, A^ Itself can have 

any real value, leaving Just Aj with a true proper value, which In general oust 
be complex.    In that case, when Re(A^) « A| « 0, the proper values and functions 

represent streaawlse vortices, which have not been adequately explored as yet.* 

Wheny Is equated to zero, or when A^ actually Is zero as 
In much of the preceding analysis. Equations (120) and (121) in the present 
case degenerate to 

iv  / 2 ^ -.2^ •• *    2a2 

« -l(po/u>[u(cpM- o2cp) • u''^] 

(128) 

2. 

and 

cf(0) « (pHO)  « 0 

(p(<») ■ cp'(») = 0 
(129) 

which Is merely the well-known Orr-Soonerfeld system In a convenient form. This 
system has been studied and solved extensively in ordinary linear stability 
theory, wherein ex and R but not c usually are regarded as real. Various results 
are included among the papers listed as references. When a and R are the given 
parameters, the proper values are those values of c, denoted as c#, for which 
non-trivial solutions exist. The familiar neutral curve of ordinary linear sta- 
bility theory is merely the locus of a versus R when c* as well as a and R are 
real.  In boundary layers like the one considered in most of the preceding 
analysis, the inequality 

0 < c,,. < u(0) (130) 

exists on the  neutral curve (see, for example, Schlichting, Reference 47), and 
a corresponding inequality exists elsewhere.  This property, by restricting the 
ranges of the natural frequencies of the driven Fourier components, prevents a 
large cia£  of partial resonances from becoming significant. 

In principle, a technique that is suitable for accurately 
solving the Orr-Soomerfeld system also is adequate for solving Equations (120) 
through (126) for both non-trivial and trivial boundary values. However, the 
techniques available from ordinary linear stability theory neither meet this 
requirement fully nor are applicable directly. In the first place, the well- 
known approximate method of asymptotic expansions generally neglects all but 
the first term of an expansion which probably diverges, while the so-called 

^Apparently, based on observations by Gregory and Walker (Reference 33^, such 
vorticies (as included In the resonance theory) constitute the primary o^'rions 
of turbulent wedges. 
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(3) Resonance Aaplltude Coefficients (continued) 

exact nethod of nuaerical integration ordinarily entails an obscure but large 
accuaulative error.* Whereas such inprecision may not excessively affect the 
proper values, which are the main quantities in ordinary linear stability 
theory. It probably can adversely alter the proper functions and thereby the 
resonance coefficients, which ere  important in the present theory. Also, 
such Inprecision would prevent a satisfactory exploration of the nature and 
role of the higher proper solutions (for T = 2,3r..), which may not always be 
negligible. In the second place, the techniques of ordinary linear stability 
theory generally apply to just real values of a and R, whereas the present 
theory Involves complex values of or and R (as well as of c). Moreover, the 
possible existence and Importance of abnormal as well as normal proper solutions 
merit consideration. Specifically, the cases when a and ß differ by a multiple of 
a certain value, which may happen in the three-dimensional motions concerned here 
but not in the two-dimensional motions usu^ iy treated in ordinary linear stabil- 
ity theory, warrant investigation. For such values of a and ß, the fundamental 
solutions of the Orr-Sommerfeld equation have a singular nature** that has not 
yet been assessed. Thus, despite the vast effort in ordinary linear stability 
theory, the Orr-Sooncrfeld system hitherto has not been solved in an entirely 
satisfactory manner nor over the complete ranges of its parameters. For these 
reasons, as an initial step in the practical implementation of the present 
theory, a better technique of solving the Orr-Sommerfeld system and thereby the 
more general systems involved here was sought and eventually found. This im- 
proved technique has given excellent results in trial calculations on an 
electronic computer but still is being developed and therefore remains to be 
described in a later paper. 

(4) Adjoint Amplitude Coefficients 

Continuing in an analogous manner, the adjoint amplitude 
coefficients are ascertained from Equations (43) and (44), which constitute 
another homogeneous linear differential system with variable coefficients. 

Eliminating §*  7]*  and C*  Equations (43) reduce to 

1AJ8J " »j.j " 0 

Ips^AkUj * cX> * ^P-X * rX> " P(8j\k *  <J)U2 - rJ 

« ^s^ - i2sj\kA£ - B]A^) 

where j,k * 1,2,3. These equations are simplified by assigning the same magnitudes 

to s^ and r^ as to u*? and pH, respectively, while 

and (113). Thereby, the whole system reduces to 

to s^ and r^ as to u? and pK, respectively, while observing Equations (101), (112), 

*ThIs error is due to a spurious solution of the differential equations which 
enters the numerical solution through truncation errors and then tends to grow 
excessively as the integration proceeds. 

**at least in some types of boundary layers. 
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(4) Adlolnt Amplitude Coefficients (continued) 

iAm8i *  s3,3 " 0 

ipsJ(A^ug+ cX)* iA}(pg^uJ ♦ rX) 

« H(S^ „  -   i2A^si -  -   s^A^A^) j»33 3j,3 jmm 

ip83(Akük * cX)  * iA3(P8kUk +  rX)   ■  P8k,3Uk *  rN 

« ^(83^33 -  ^^3 -  s^) 

(132) 

and 

sfn(xn) ■ 0 m n 

8«<0 c 0 (133) n n 

rh**)  « 0 n 

where Jtk = 1,2 and in,n 
s 1,2,3. Substituting the dimenslonless quantities 

A^ = A^A cX = cXA/r 

AX        x ^x x        •? ^ 134) 8™ " Sm/T rX = rVpT2 

along with Equations (116) and omitting the overscript, the same relations are 
obtained as for the dimensional system. 

As in the preceding case, an alternate form of Equations 
(132) and (133) often is preferable. This form involves Equations (117) 
through (119) with the superscript H replaced by X and also the new variables 

X - 1A^ - iA^ 

^ - s^ (135) 

r » p(s.U. + 62^2^ ♦ r 

which are regarded as functions of z alone.  First, an elimination of r alone 
supplies the supplementa' equation 

XM - i2YX, - (ß2 ♦ Y2)X+ i(p(>/^)ux= 0 (136) 
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(4) Ad Joint ABPlitude Co^fflcienti (continued) 

A     with the conditions 

x;o) • o 

x» - o Cl37) 

In the present problea, this systen has Just the trivial solution 

y- 0 (138) 

which together with the first of Equations (132) leads to the auxUlary relations 

a2») • -lA^f - iy$) (139) 

and then to the identity 

irfiere J ■ 1,2. Next, an ellnlnatlon of 8p s^, and r using Equation (140) yields 

the principal equation 

^ tiv - i4vt»»« (a2 ♦ ß2 ♦ 6y2)t" 

♦ 12Y(or2 ♦ ß2 ♦ 2Y2)t' ♦ (cr2 ♦ Y2)(ß2 ♦ y2)^ (141) 

« -KpaA*) {uC«" - IZ-y*' - (a2 ♦ y2)*] ♦ 2u,(V - iy*)} 

with the conditions 

^(0) - ^(O) " 0 

^(•) ■ ^'(ä) ■ 0 

Finally, the last aeabers of Equations (132) and (133) are expressible as the 
equation 

r'  - lyr « -»[)" - 12Y^, - (ß2 ♦ v
2)|] 

- ipouv ♦ Uft/ahi'li' - iyt) (143) 

and the condition 

r(«) ■> 0 (144) 

^      Fron this form, ^ Is obtained first, Independently of all other unknowns, after 

which Sj and sij and finally r^ are evaluated as requived.  Sometimes, r^ and 
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(4) Adloint Amplitude Coefficients (continued) 

therefore Equations (143) and (144) are not needed. Furthermore, substitution 
of the new variables 

♦# ■ f eKp(-lYz) 
(145) 

r# « r exp('iyz) 

yields an even simpler system, which with the asterisks omitted is identical to 
Equations (141) through (144) with y equated to zero. 

As would be expected, the principal resonance system given 
by Equations (120) and (121) for trivial boundary values and the principal 
adjoint system given by Equations (141) and (142) are adjoint to each other 
over the interval 0 £ z £ «e. Thus, the proper values of these systems are 
identical and could be ascertained irom either system, although the principal 
resonance system seems to be slightly preferable for this purpose. When y equals 
zero. Equations (141) and (142) degenerate to 

4iv - (a2 ♦ e2HM ♦ »Vv f      «    p /f    » p v (146) 

» -Upa/^luli" - a2;) + 2^*'] 

and 

(147) 

^(0) = ^(0) = 0 

^(00) S  ^'(OO) SB 0 

which is merely the adjoint of the Orr-Sommerfeld system. 

Along with the reduction of the amplitude coefficient systems 
to ordinary differential systems, all three-dimensional integrals over the tran- 
sition domain D are replaced by one-dimensional integrals over the interval 
0 £ z £ ».  in effect, this interval is equivalent to a three-dimensional domain 
of unit lengths in the Xj and X2 directions. 

(H) Generalizations 

Although the analysis has pertained mostly to just a relatively 
simple boundary layer, the basic techniques and main results can be generalized 
directly to many other flows.  First, besides the spacewise partial resonances 
considered so far, timewise partial resonances resulting from timewise aperiodic 
variations of the flow may be included. Second, the Cartesian tensor represen- 
tation may be replaced by a curvilinear tensor representation, enabling curved 
wall surfaces and adjoining flows and also curvilinear phenomena like Goertler 
and crossflow vortices to bs encompassed. Third, the original incompressible 
differential system may be replaced by a compressible system containing the con- 
tinuity, momentum, and energy equations and the accompanying fluid property 
relationships. The latter system will permit supersonic transitions, and also 
the effect of external sound on subsonic transitions, to be investigated. Haw- 
ever, that system ordinärly will have some nonquadratic terns 
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(H) Ctneiallxatlona (continued) 

which first oust be reduced to more elementary form«. This reduction generally 
can be acconpliehed satisfactorily by approximating the fluid property relation- 
ships by finite power series as necessary ami then defining various quadratic 
products as supplementary unknowns. Fourth, the underlying differential system 
may be generalised further so as to cover chemical and electrooagnetical inter- 
actions including dissociation and iosization. This extension will pertain to 
hypersonic transitions and also a variety of other important phenomena -- such 
as combustion instability in rocket motors, plasms instability in thermonuclear 
power apparatuses, and certain features of the general circulation of the 
atmosphere. Again, the differential system could and therefore would be reduced 
to a form containing the unknowns just quadratlcally. Finally,several other 
extensions also are possible — such as to deformable wall surfaces, foreign 
fluid Injections, etc. 

In oach Mich generalization, the unknowns would be expressed by 
perturbation series in a perturbation parameter representing the magnitude of 
the boundary Irregularities. Then, these series would be substituted into a 
quadratic differential system to obtain a sequence of perturbation differential 
systems. As lr the preceding analysis, the zero-th or basic perturbation system 
would be nonlinear, whereas all other perturbation systems would be linear but 
inhomogeneou'i — the first perturbation system having homogeneous differential 
equations end the higher perturbation systems having trivial boundary values. 
Again, thfi  basic flow would be chosen as the laminar flow occurring In the 
absence of all boundary Irregularities, while the first perturbation trauId be 
detenr.ined sole'v by the boundary irregularities, and the higher perturbations 
would be determined solely and recursively from lower perturbations. Thereby, 
in contrast to the formulations of other theories, the entire disturbance motion 
would be related directly and uniquely to the boundary irregularities themselves. 
Furthermore, by a process like that used earlier, the perturbation components of 
the unknowns would be expressed in Fourier series extending over all coordinates 
and the time. Next, these series would be substituted Into the perturbation 
systems, yielding spectra of Fourier coefficient systems resembling those 
encountered earlier. Subsequently, the Fourier coefficients themselves would 
be decomposed into amplitude coefficients and growth functions. Again, the 
resulting amplitude coefficient systems would Include a differential system 
resembling the one encountered In ordinary linear stability theory but possessing 
a greatly different Interpretation and application. Also, by approximations cor- 
responding to conventional boundary layer assumptions, the basic flow and ampli- 
tude coefficient systems eventually would be reduced to simpler differential 
systems that could be solved by available techniques. (For !he basic flow in a 
boundary layer, a general calculation technique already has been developed 
(Reference 45))» 

Even in these generalizations, the principal phenomena still would 
be simply the pax dal resonances between the driven and the driving Fourier coef- 
ficients. The resulting growths, expressed mainly by the growth functions, again 
would include not only variations like those deduced in ordinary linear stability 
theory but also diverse faster and larger variations. However, the forms of 
the elemental motions as represented by the products of the amplitude coeffi- 
cients and the phase functions still would resemble those predicted by the 
linear theory. Moreover, the calculations Involved would be similar to, though 
somewhat more general and complicated than, those required In that theory. In 
fact, after appropriate adaptation and re-interpretation, many results available 
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(«) C«narallgatlom (contlmictd) 

fro« ordlnaiy linear •Cability theory could be used for the «ore general phenoaene 
concerned here — insofar as such results are precise enough. However, upon syn* 
thesising all of the constituent «otions, a wide variety of critical phenoaena 
not predicted nor explained by the linear theory would be obtained. Consequently, 
generalized analyses and calculations like those just indicated should yield a 
variety of nsw knowledge advancing the status of several engineering and scien- 
tific fields. 

(i)  cpncMiflg Sgtdsi 

As foraulated here, the resonance theory of transition seeas to 
provide a reasonable explanation of instability, transition, end turbulence alike 
and also to offer a possible way of estiaating such phenoaene. In particular, 
this theory attributes the aain features of each of these phenoaene to a rather 
siaple basic aechanlsa — neaely, the partial resonance that aay occur between 
a driven end a driving Fourier coaponent of the flow — which can be calculated 
by available or attainable techniques. Moreover, unlike aost other theories, 
the present theory relates the whole aotion directly and uniquely to the condi- 
tions at the boundaries of the flow, this aotion being synthesized froa a basic 
motion and the eleaental motions generated by a sequence of partial resonances 
that is excited by the boundary irregularities. Nevertheless, besides con- 
stituting a relatively simple solution of a formidable nonlinear aatbeaatlcal 
problem,the theory can be generalized directly to a wide variety of fluid flows. 
Thus, altogethet; the resonance theory appears to represent a substantial 
refinement and extension of several previous concepts of instability, transition, 
and turbulence. 

However, to fully Implement the theory, some new calculation aethods 
are required. In the first place, precise and efficient techniques of solving 
the approximate amplitude coefticlent systems are needed. As mentioned earlier, 
substantial progress in this direction already has been made. In the second 
place, suitable approximate or exact techniques of synthesizing the individual 
motions from the partial resonances should be developed. Alsc^ the asymptotic 
form of the synthesized motion, representing fully developed turbulence, should be 
sought. For these purposes. Incorporations of some techniques froa the classical 
theory of non-linear oscillations may be helpful. In the third place, a feasible 
technique of determining each perturbation component for a rough or deformable 
wall surface is needed. Except for surface waves of infinitesimal height and 
slope, such a calculation requires the solution of a linear boundary value problem 
of a relatively difficult type. In the fourth place, after various details are 
clarified, convenient approximations for practical applications of the theory should 
be established. 

Also, to ascertain the validity of the theory, careful and complete 
comparisons with experimental obser'ntions are essential. Unfortunately, despite 
their abundance, the existing experimental data are inadequate for this purpose. 
As a careful examination will reveal, these data generally do not include enough 
information to fully ascertain the boundary irregularities at the wall surface 
and in the adjoining flow. Moreover, the actual influential boundary irregu- 
larities usually have been quite random, preventing a simple comparison with 
theory* Therefore, some careful experiments with simple and knovn boundary 
irregularities, using refined and complete instrumentation, are needed. 
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CHAPTER B. EXACT NUMERICAL SOLUTION OF THE COMPLETE LEES-LIN EQUATIONS 
FOR THE STABILITY OF COMPRESSIBLE FLOW     ^  ^^~ 

W. Byron Brown 

(A) Notation 

Dimensioniess Quantities 

p      Gas Density 

Characteristic 
Measure 

Gas temperature T* 
o 

First viscosity coefficient u' 
10 

a 

C 

R 

i>.cond viscosity coefficient 

Disturbance wave number 

Phase velocity of the disturbance 

Specific heat ratio C /C 

Reynolds numbtr 

20 

.-1 

u* 
o 

p* u* I 
_2 2_ 

^10 

M Mach number 
/ 

o 
Y T* R* ' o 

CP ^1 Prandtl number a -    _  
k* 

k Thermal conductivity 

Length unit -— 

C a* 
P  10 

x* Distance from stagnation point 
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(A> Notation (Continued) 

ChÄracteristic 
DLmensionless Quantities Measure 

x       Nondimensional distance I 

y Distance from wall I 

w       Undisturbed velocity in boundary layer   u* 
o 

f       Velocity disturbance amplitude in x direction 

u = w(y) + f(y)e 

0       Velocity disturbance amplitude in y direction 

, , i a(x - Ct) 
v = a cptyJe 

n Disturbance amplitude of pressure 

t Time jfi/u* 
o 

A bar over a quantity denotes average value, a dart denotes 
fluctuation. Subscript o denotes freestream value, subscripts 
r and i denote real and ioiaginary parts. 

(B) Introduction 

At the Stresa Conference (Reference 57) Reshotko pointed 
out that at Mach numbers above 2, a number of terms depending on the 
temperature derivati/es of the viscosity were no longer negligible on ac- 
count of the large temperature change?, in the boundary layer. For example, 
at Mach 5, the wall temperature is 5.3 times the free stream temperature 
if the wall is insulated. At Mach 3 it xs 2.5 times. 

In view of this, Pfenninger suggested a numerical solu- 
tion that would include all the terms in the Lees-Lin equations (Reference 
58), not only those suggested by Reshotko but all the others as well. 
This has been done in this report, and numerical solutions obtained for 
flat plate profiles with insulated walls for Mach numbers from .4 to 5.8 
and with two air temperature conditions as in Reference 3. The first is 
a stagnation temperature in the air stream of 1000F, appropriate to com- 
mon conditions in wind tunnel experiments. The second condition is a free 
stream temperature of -670F, appropriate to flight at high altitudes. In 
most cases, the velocity and temperature profiles used were those given 
in Reference 59, 
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(C) Aroily»!« 

UM stability «quations for a conprassibl« boundary art giver, in 
Reference 57 and 38 as follows in nondiaansional notation. 

(1) Laes-Lin Equations 

a p |i(w - c) f + w» 0| « - i2!I + Ü If" + {^(Kpt . 2f)| 

2 ^2 " ^1 2 + f -i-^-iorCi^ . f) (1) 

+ i {nwM +ia»w» +»i»(f» + iAj 

or   p |l(w - c)cp]. • . Jll   ^ {2cp" + if» - er2«?} 
VM2 

^o - ^ 

| {inw^ + 2!Atcpi +| (n2i - ly) (cpt + if)j. 

tpt + if - I'CP + l(w - c) (TT - S) - 0 

+ y^ "  L2 M
2
 jnw»2 4- 2^w»   (f» + iö2<P)} 

(2) 

T T (3) 

« P {l(x* - c) 8 + Ttco} - - a(Y - 1) PT (cp» f if) 

+ JL 1^(9'" - cA) + (ml») +n»e»j (4) 

Boundary condition: f *■ cp « 9 a 0 when y «» 0 and f, cp, ö bounded as y "* m where 

m - 9 ^  and (5) 

ti. . T« ^ (6) 
ui 
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(C) Analysis (Continued) 

^_ nay be ellnlnated by the relation 

a2 + 1 ti. « 0 (Reference 6 0) (7) 
•»  1 

7 
■Jl 

£ f 

W, "" !? 

Also the equation of state is 1 «= PT if the pressure is regarded as unchanged 
through the boundary layer thickness. 

(2) Reduction to Normal Form 

It is shown in Reference 58 that this set of four equations 
(three of the second order) can be expressed as a system of six linear first 
order equations. The dependent variables then become 

Z_ = f» Z = cp 
2 3 

Z5 = 3 z6 ' ^ 

Thus the normal form for equations 1 to 4 becomes 

•V = ^ cij Zj (i = 1.2,....6) (8) 

j=l 

where the c. . 's are 

c12 = 1 

r.?]   = Zj&j  - OR + a
2 

ZL HT 

C22 = - i dU T, " u dT 

C23 =^„» +i^(lnT)» . i£d ^T. 23  M-T      9  '        H  dT 

C0/ = IS + ^(w - c)H2 
^^  V M-      9 

7 2 
c.r = - i. ^iw1' - "' TTIIÜ  2L (

W
 - c) 

25    U dT    ü i dT2 " 9     T 

w' dj^ 
Ü dT 
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(2)    r.educLign to lorr.al  "orr (Continued) 

C31 = '*■ 

C33 « (InT)' 

C3^ « -i(v - c)M2 

C35*±&-^1 

C41-^[-|(lnT).i-2(lnT).I   f i] 

• C43 - J.   [fdnx/V   f {(InT)«}2 -^ . ^Rt^), |{(lnT)f^ ^ |] 

C44 - 7~   [- fw'M2! - |(lnT)t   i(w - c)M2 - |i(w - c)n2(lnT)»I ^J 

r.- «    1    PS /W-c •.   .  8/,  TM w - c  ,      lw»    dM-      8/,  «x. w-c du    1 C45    ^ L9 (-T-) i + 9(1,lT), -T- i + IT  dT + g^1^' "IT" d7 ^ 

c^ --L i i (w - c) 
^      Hi   9 i       T— 

where a^ « -S- + i i(w « c)M 
pwry     9 

Se"1 

C62 - -2(V - DM2^» 

C63 - 22i(lnT)»  -2(r - D^w»»2^ 

C64 - (r- 1)  (w - c)al£2E 1 vu 

.2  A C.* - i^gCw ■ c) + a
2 . I" du , rf   dV _ a(Y - Dlf    du „,2 

o;) UT U   dT       u      dT2     ^      n dT 
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(2) Reduction to Normal Form (Continued) 

C  = - ill ^Ü 
66 ' ' u  dT 

The boundary conditions in terras of the Z's are, when y * 0, 

Zj^ = Z, = Z5 = 0 and 

Z,, Z,, Z- bounded as y -. TJ 

The condition Z5 = 0 when y = 0 is the usual one for high frequencies (Reference 

38). 

(3) Boundary Condition at y « 6 

A significant difference between the conditions when y < 6 and 
those when y > 6 Is that in ihn  ferner region the velocity, density, temperature, 
viscosity, thermal conductivity, etc., all vary from wall values to freestream 
values, i.e., they are functions of the wall distance y.  In the freestream, these 
physical quantities are constants (at a fixed value of x^ ths distance from the 

stagnation point). Thus where y > 5, all the C^'s become constants, say C *,s. 

The system of equations (8) becones the system 

V * J Cij* 2j (* = 1.2,3,4,5,6) (9) 

j.l 

whose solution is well known. 

If Zj = k exp (Ay) Is substituted into the above system 

equation (9) in the usual way, it can be shown that the characteristic determinant 
can be expressed as 

F(X) « f(>.2) = (X2)3 + A! i\2)2  + A-X2 + A, 

v/here 

-Al ' Si* + C65* + C24* C«* + C34* C43* + C46* C64* 

A2 = V  C46* c64* " C35* C43* C64* " C25* C42* C64* + C21* C65* 

+ C34* C434 Si'1 + C24* 
C42* C65*  + =2!* C34* C43* " V Si* C43* 

^ '  Si* Sä* C43* S4* " S5* Si* 
C43* S4* " Si* S4* C43* C65* 

7A    "31  A3 "65 
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(3) Bouaimry Condition at T ■ 6 (Contlnuod) 

If the roots of F(X) ■ 0 art donotod by 

±Kit  1 - 1,2,3 

whor« real part K^ > 0 

then 

X, » - A. 

X2 - - A2 
X2 • - A3 

X4 • + Aj 

X5 - + A2 
X6 - + A3 

and the general solution of equation (9) nay be written 

Zl - 6 k^ expCXjy) (l . 1,2,3,4,5,6) (y ^ 6) 

J-l 

Of the 36 constants k.. only six may be chosen Independently. 

The remainder are determined by substitution Into the differential equations (9). 
Thus It Is found that when 

and 

kls ' \  [C2*4 ^Xs - c65) + C2*5 C64] Ks 

-kls Ks   s - (1,2,3,4,5,6) 

kls " Xs LC24 (Xs * W  + C25 C64J 

k2S - \ hs 

Ss " C3*4 (Xs2 - C2*l>  (X82 * C6V + C3*5 C6*4 ^s' " C2*l> 

+ 03*! [c2*4 (x8
2 - c6*5) + c2*5 Cej] 

k4s " Xs <X»2 - C2*)  i\2 - Cs) 

*5s - X8 C6*4 (X8
2 - C2* ) 

J6. * X. *5, 
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(3) Boundary Condition at y « 6 (Continued) 

Thus the general solution of (9) is 

Zi  - S kis Ks P "^ (H) 

j*l 

The stated boundary conditionsas y - ^ are that Zp Z«» Z^, 
\s y 

e implication is that the coefficients of e   nui 
for y ^ 6 when the real part of ^ is positive i.e., wnen s = A,5,6, 

\sy 
remain bounded. The implication is that the coefficients of e   must vanls 

Since equations (11) applied at y - 5, form a system of 
simultaneous linear equations for evaluating the 6 Kg's, upon solving and setting 

Kg • 0, s ■ 4,5,6, three homogeneous linear functionals in the Z^'s  result, which 
must be satisfied when y B 6. 

To obtain these functionals, let k^J be the cofactor of k lj 
in the kj. matrix and let k « Jet k... Then 

6 

j - e 'Vl1^ zi  <6) J = 1,2.3,4.5,6 (12) K 
7 k 

klj   -  -I The factor ~— = (k.,)  and can be found by inverting the 
k     ij 

kj^j matrix. Thus the boundary conditions when y = 6 are ßiven by 

6 

)}   (kij)'1 2^(6) «0    i = 4,5,6. (13) 

1 

(4) Fundamental Numerical Solutions 

When y < 6, the coefficients are variable and a numberical 
solution is required. In Reference 61 it is shown that the general solution of 
a system of linear equations can be expressed in terms of a set of fundamental 
solutions defined by their initial conditions. Thus, if 

Z^^ (0) « 6^ 

the general solution of (8) may be written 

Zi -^i CjZ:
(1) (14) 

1 

where the Ci are constants to be determined. 
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(4) Ftmdaaenfl Mt—rleal Soluttong (Continued) 

t 

Substitution of ttw Initial condition« yield« 

ZjCO) - CjZ^^ (0) - q - 0 

Z3<0> - C3Z3(3) '0> « C3 - 0 

25<0) - C5Z5
<5) (0) - C5 - 0 

Rene« th« gonoral solution btcones 

21 " c22l(2) + C4Z1(4) + c6zi(6) (15> 

Lot C2 ■ !• Th«n the problem Is to determine C^ and Cg and 

any two of the real paraswters a,  R, Cy *t>d  C^ fron the conditions at y ■ 5, 

K4 ■ K5 ■ Kg « 0 i.e., at y ■ 6. 

i 6 

S (kij)*^^^ C4)j (k^Z^  +   C6 ) (kij)"
1^^ .0 

1 1 

(16) 

1 - 4,5,6. 

For convenience, let 

6 ,. .-I 
Kl* ")) ^ij^ Zj (6)  and (17) 

6      1 

^♦(p) *J}  (k^)" ZJ
(P) (6) (18) 

Then (16) becomes 

Ki* - Ki*<2) + C4 K1*(A) + C6 K^^^ 0   1 - 4,5,6. (19) 

By setting K4* ■ K5* « 0, two equations can be found con- 
taining C4 and C5. Solution of these two simultaneously yields values for C4 

and Cg. These values substituted in (19) yeild a value for Kg*. Then a, R, Cr 

and C| must be adjusted so that Kg* « 0. 
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(4) Fund—nt^l Nuatrlcal Solutlont (Continued) 

For values of er R > 45 it is difficult to ascertain sufficiently 
accurate values of C* and C* from the fundamental solutions (which are oscillatory 
with high anplification). In this event a method of employing differential cor- 
rections to C4 and Cg is used. After C4 and C5 have been found approximately from 

equation (19) i « 4,5» an integration is carried out with initial conditions. 

Ä2  u2 

Z3 « 0 

0 (20) 

(1) (1) Denote by C4V ' and C6
VW, the solution of K^* » K5* • 0 and by Z^j the 

particular solution based on these initial values. 

The values of the linear functions K|* calculated from the 

Z^/jv vill  be denoted by K^*/^ i.e., 

6 

Vd)'^ ^ij)"1^ (*)-Ki*[c4  ,C6  ] (21) 

1 

If \fi\* and KJQJ* are not exactly «ero, C^^  and Cg^ ■ tonst 

be corrected to nalce thetn so. Because the KA/IN* «nd Ksn)* are functions of 

C^ and C^, they nay be expanded in a Taylor»s Series. 

iq* (C4, C6) « Ki* [C4
(1), C6(I)] +[c4 - C4

(1)] Eki 

[* - 'n (1)") SK1* 

öce 

Because I' -'' I i'V 1 c/'' C6J = 0   i = ^»5 

c6 mC6 

(1) 

l(l) 

C4 - C <l)  (22) 

'6 
(1) 

•i;i(l)* = *CA- 
'■r< 

C4 

C6 
C4 
:6 

(1) 

c/ü) 

+ AC6 —i- 

C4 

C6 

- C <!> C4 
c6 

(1) 

i • 4,5  (23) 
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(A) Fundamental Numerical Solutions (Continued) 

where   C4
(2) - C4

(1) -h AC4 
c6(2) . r.(2) + Ac6 

will give improvad values of C^ and C^. 

The partial derivatives in (22) and (23) may be approximated 
by 

*,♦  K*, [c4(l) + 6C4. C6<1>] - V k(1). C6<
1>] 

«._JL- w  MI  i ■ ..I .in i       I,, 

ÖC4 fiC4 

*<*     K,* [C4(1), C6<1) + 6C6] - V [c^\ C^] 

(24) 

dc6 6C6 

The entire process may then be repeated until satisfactory 
convergence is attained. 

Finally, after the nth boundary values K-i(n* have been 
computed and the corrections AC^ • CV (n + 1) - C^M  found, a final Improved 

estimate of Kfi* | c/n + l\  Cft^
n + ^    may be "btalned from its Taylor expansion. 

Vh(,, + I).C6<-^>].K6%)+4C4J + 4C6g („) 

(D) Calculations 

The method described has been used to compute neutral stability 
curves for two series of flat plate profiles from M » 0 to M « 5.0. The two 
aeries are those whose velocity and temperature profiles have been published 
in Reference 39. In the first series, the stagnation temperature of the air 
stream was taken ac 100"F, appropriate to many wind tunnel experiments. In the 
second series, the freestream static temperature was taken as -67"F, appropriate 
to high flying airplanes* In addition, some calculations have been made for 
M w 5*8 (stagnation temperature 2250F and Eu » +.0019) to compare with the data 
of Reference 62. 

Another series of experiments was carried out at M ■ 3.8 
(Reference 62), In order to compare these results with the theoretical solu- 
tions, velocity and temperature profiles were computed for this case by the 
method of Reference 43. 
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(E) Results and Discussion 

The velocity and teraperature profiles are plotted in Figure 1 
and Figure 2 in nondimensional coordinates. All the profiles are for the 
Insulated flat plate case except M « 5.8, where the Euler number was +.0019 
and the stagnation temperature 225°?  to tnatcli the experimental conditions In 
Reference 62. 

A comparison between this theory and the experimental results 
of Reference 63 Is shown In Figures 3 and 4 . In Figure 3 (M = 1.6) there 
is good agreement with the experimental data in both branches. 

In Figure 4 (M « 2.2) agreement between theory and experiment 
is good in the lower branch, but not so good in the upper branch. 

The theoretical curve of Figure 4 (M « 2.2) has been compared 
in Figure 5 with another theoretical curve presented in Reference 64, the 
agreement here is very close on both branches. 

Figure 6 shows a comparison of theory with experiment at M - 5.8* 
The data points are from Reference 62. At this Mach number there is still good 
agreement In the lower branch. Again there Is disagreement in the upper branch, 
but not in the sar.e sense. Here the computed points are above the data points 
whereas at M = 2.2, Figure 4 , the computed points are below the experimental 
points. 

A comparison at M * 2.2 is made between the neutral stability 
curves given by a numerical solution of the Lees-Lin equations (this report) 
and the Dunn-Lin equations. The critical Reynolds number for the Dunn-Lin 
solution is about 25 percent less than for the Lees-Lin. The unstable region 
is larger for the Dunn-Lin. 

Figure 8 shows a similar comparison between the neutral curves 
computed by the Lees-Lin and Dunn-Lin equations when the Mach number is increased 
to 5. Here the difference between the critical Reynolds numbers has increased to 
62 percent instead of 25 percent at M » 2.2. Both are below Demetriades data at 
M = 5,8. 

Figure 9 shows a aeries of neutral curves near the critical 
Reynolds number in each case for Mach numbers from 0 to 5 when the freestream 
stagnation temperature is 100oF and the surface is an Insulated flat plate. 
The velocity and temperature profiles used were those of Reference 59 • 

A similar series of neutral curves was computed and plotted in 
Figure 10 for the other set of profiles computed in Reference 59, those where 
the freestream temperature is taken as -670F. 

These two series of neutral curves are compared in Figure 11, 
where critical Reynolds number Rc_ is plotted as ordlnate against Mach number 
M as abscissa. This comparison shows a large divergence at high Mach numbers. 
When the flight alrstream condition is used (stream temperature -67«^) con- 
siderably more stability is indicated than when the wind tunnel test condition 
ij  used, stagnation temperature = 1000F, 
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(F) Ccncluston» 

To a Mach mnaher of about 1.6, the Leas-Lin aquations agree very 
closely with observed rtabillty data In both upper and loner branches of the 
neutral stability curve. From there up to 5.8, neutral stability calculations 
with the Lees-Lin equations agree veil with the experimental data for the lower 
branch of the neutral curve« The calculations do not agree with the data in 
the upper branch. A possible remedy for this is being studied. Up to about 
1.8. the Dunn-Lin equations give a good approxlostion. Above that Mach tiunber, 
they diverge rapidly fron the Lees-Lin equations as the Mach number Increases. 
At lUtch 5,  the Dunn-Lin critical Reynolds number is 62 percent below the 
Lees-Lin number. 
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CHAPTER C.  CROSSFLOW STABILIIY CALCULATIONS ON HIGHLY SWEPT (65° SWEEP) 
SUPERSONIC LOW DRAG BLC WING (MACH NUMBER 1.8) WITH AND 
WITHOUT COOLING 

W, Byron Brown 

(A) Notation 

Nondlnenslor .1 Quantities 

Distance normal to wing y 

Time 

Velocity components 

Crossflow parallel to 
wall 

Crossflow perpendicular 
to wall 

Density 

Pressure 

Temperature 

Viscosity coefficient 

Wave number of disturbance 

Wave velocity of disturbance 

Specific heat at constant 
pressure 

Specific heat at constant 
volume 

Reynolds number 

Reynolds number 

Prandtl number 

w(y) + f(y) e 
ia(z'Ct) 

v(y) + (y) e 
la(x-ct) 

P + r(y) e 
icy(x-ct) 

p(y) + r(y) e 
j 

T(y) +e(y) e 

la(x-ct) 

iQf(x-ct) 

Un(y) +|f 9(y) e 

a 

c 

Y 

ic^x-ct) 

Re « Ipli . /R 

P^QtL^ 
R 

Uj* 

a = 3V 

Reference 
Quantities 

6 M boundary 
layer unit 

6/Qt 

Q» 

Q» 

?!* 

pi* 

Tl* 

ßl* 

1/6 

Q' 

<* 

Cv 

k* 
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(*)    Notation (Continued) 

Hach uumber M ■ 

la(x-ct) 
Thannal conductivity        k « ^(v) + A E 9(y) e 

ä(y)     dT a 

A bar (—-) denotes a mean value. 

The nondlmenslonal quantities w, f, 0f nf  Tf r, 9 are considered functions 
of y alone» 

The quantities (A, Y, c, p are functions of T only. 

For moderate Mach numbers es  here, y  and <? are considered as constants 
equal to freestreata values. 

-1/2 
5 - L » • R 

v. o 

LQ* « chord measured perpendicular to the leading edge. 

Qf B  resultant potential velocity at edge of boundary layer. 

J£        p,*. P.*, T.*, ti.*, etc., are dimensional values at edge of the boundary layer. 

The primes (') indicate differentiation with respect to y. 

(B) Introduction 

It has been found by Reshotko (Reference 65 ) that (for Mach 
numbers below 2) the terms used in the Dunn-Lin equations (Reference 66) are 
sufficient for stability calculations of a compressible laminar boundary layer. 
This simplified version of the complete Lees-Lin equations (Reference 38) has 
been used, therefore, to compute the stability of the crossflow profiles on a 
highly swept (65-degree sweep) supersonic low drag BLC wing at a Mach number 
of 1*86 with and without cooling. 

(C) Analysis 

The analysis is the same as in Reference 7) except that the values 
of the Cij's are simpler.  In this case they are as foilova: 

c12-i 

C  . Re ia  (w-c) 
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(C)    Analysis  (Continued) 

C22 » 0 

C23 
Re cr y* 

r      ,, Re tor 
C2^    TT* 

C31 ' -1 

v. 33 - (In T)» 

€34 « -i Mz (w-c) T 

C35 « ^  

»44 ~- + M2 i (w-c) 
MLOrv 

r      « -i (In T)' 
1 344 

r.-  » JLi 
-42 

c43 

C44 

C45 

c46 

C63 

c64 

C65 

a44 

J_r.ae^jv^ + (lnT).. + [(lnTi)ll2} 

A- { -  (In T)'  O2 i (w-c)] - [M
2
 i  (v7-c)1'l 

344  i- J 

1    1 (w-c) 
a44        T 

Re g ^ (In T)» 

- Re g M    ÜIÜ  i a' (w-c) 
jJLY 

g Re cr j (w-c) 
u    " "     T 
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I (D) Calculations 

Two  crossflow profiles were considered. These profiles were 
computed by the method described in Reference 43. The angle of sweep was 
65 degrees and the local Mach number was 1.86 in both cases. The velocity 
profiles are shown in Figure 12 and the corresponding temperature profiles 
in Figure 13. 

Four neutral stability curves were computed, two for each 
profile. Because the boundary condition at the wail is different for high 
and low disturbance frequencies (as explained fully in Reference 66), each 
condition was computed for each profile. Reference 66 shows that when 
the disturbance frequency is high (the usual case with a metal surface), 
the boundary condition at the wall is 9(0) = 0. When the disturbance fre- 
quency is very low the condition reduces to 

9,(0)\kif^0
6(0> = 0 

Thus in the Insulated profile ^- = 0 at the wall so that 8' = 0. When the 
ay 

surface was cooled by radiation, T nf ^ I   = .08666 in this case so 

that the low frequency condition was 

e^O) ♦ .08666 6(0) = 0 

For comparative purposes the Orr-Sommerfeld equation was applied to the 
two velocity profiles, the temperature profiles being neglected. 

(E) Results and Discussion 

The four neutral curves are shown in Figure 14, the solid 
curves representing the two high frequency cases and the dotted curves 
the low frequency cases. 

Though most practical cases are close to the condition 
0(0) = 0, the other extreme (very low frequency) would not alter the re- 
sults much, especially in the adiabatic case when it alters the critical 
Reynolds number 1.6 percent. 

The compressible and the Orr-Sotmnerfeld solutions are com- 
pared in Figure 15. The Orr-Sommerfeld approximation is lower taan the 
compressible one by an amount which appears to depend on the wall temper- 
ature.  In Figure 16 the ratio of the critical Reynolds number computed 
by the Dunn-Lin compressible equation to that computed by the Orr- 
Soraraerfeld equation is plotted against the ratio of wall to stream 
temperature. Over this range the results are represented by the curve 

.^£c = T0.47 
Rco 

i. 
I -71- 



(E) Results and Discussion (Continued) 

For design purposes, a few compressible solutions covering the temperature 
range expected should determine a curve enabling routine results to be found 
by the Orr-Soramerfeld equation, which can be integrated with less time and 
expense. 

Figure 17 shows the correlation plotted in Reference 67 but 
suggested by Gregory (Reference 68) betxveen a shape parameter Reynolds number 
X and a shape factor T|",  g is defined as the maximum velocity of the profile 
multiplied by a boundary layer thickness when the velocity has decreased to 
10 percent of its maximum value, divided by the kinematic viscosity u. 
T]" is the wall value of the second derivative of the velocity profile« In 
our notation 

^L ^ = U   ZA Re 
xrlt   max fl cr 

and 

The equation of the straight line is 

Xcrit = 58.8 + .7077 T]" (Reference 67). 

I/hen the two points found from the compressible neutral curves 
(Figure 14) are plotted In Figure 17, they are found to He quite near the 
correlation line determined from incompressible calculations. 
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CHAPTER D.  INCOtgRKSSlBLE CROSSFLOW STABILITY CALCULATIONS WITH VARIOUS 
ANGLES OF THE HAVE FRONTS WITH THE POTENTIAL FLOW DIRECTION 

W. Byron Brown 

(A) Notation 

L      wing chord 
U L 

R       flight Reynolds number « -2— 
u 

Re boundary layer Reynolds number * /R 

U0      freestream velocity component perpendicular to the wing 
leading edge 

v       velocity component parallel to the surface in any of the 
given planes 

y       nondiaensional wall distance 

a wave number of disturbance (always real, nondimensional) 

c       angle between given plane and the transverse plane 

v       kinematic viscosity 

(B) Introduction 

Stuart, in Reference 4, stated that if the plane in which a two- 
dimensional boundary layer profile on a swept wing is computed is shifted from 
a direction transverse to the main flow both ways, then a series of boundary 
layer profiles results, as is shown in Figure 18. Each profile will have a 
neutral stability curve which can be computed by integrating the Orr-Sommerfeld 
equation. One of these should have the lowest Reynolds number of the group. 

In the present report four of the suction profiles on a swept wing 
close to the wing trailing edge have been computed and used, In turn, to compute 
four neutral stability curves. Among these four, the transverse profile has the 
lowest value for the critical Reynolds number. 

(C) Analysis 

If the dimensionless velocity normal to the potential streamline 
is called N and that along the potential streamline is called T, then in any 
other direction, obviously, 

S- « N cos € - T sin c (1) uo 

if e is the angle between the given plane and the transverse plane. This equa- 
tion was used to compute the velocity profiles in a direction e . 
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(D) Calculations 

Four profiles were conputed by eq (1) and plotted in Figure 18. 
The four values of e were -7o40,, 0, T^O' and IS^O'. 

Four neutral stability curves were computed by the method of 
Reference 6. These stability curves are shown in Figure 19. 

(£) Results and Discussion 

The curves of Figure 19 show that both the critical Reynolds 
number and the range of wave numbers in which amplification is possible depends 
on f.t  which measures the direction of the profile plane. 

If the critical Reynolds numbers are read from the curves of 
Figure 20 and plotted against values of e, then Figure 20 results.  The lowest 
point of the curve does not appear to be exactly at the transverse plane, but 
it is so near it that the value of Re critical for the transverse plane is not 
far from the minimum for any plane. 

(F) Conclusions 

The critical Reynolds number computed from the transverse boundary 
layer profile at a station close to the trailing edge of a swept laminar suc- 
tion wing is within about ten percent of the lowest value for any plane profile. 
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CHAPTER A.  EXPERIMENTAL INVESTIGATION AND THEORETICAL ANALYSIS OF LAMINAR 
BOUNDARY LAYER SUCTION ÖH A 30°  SWEPT. I2-PERCENT-THICK WING 
IN THE NASA AMES 12-FOOT PRESSURE WIND TUNNEL 

L. W. Gross 
J. W. Bacon, Jr. 
V. L. Tucker 
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(B) Summary 

Low drag boundary layer suction experiments were conducted 
at high Reynolds numbers in the Ames 12-foot pressure tunnel on the Norair 
30° swept, 12-percent-thick, symmetrical laminar suction wing at a = 0, +1, 
♦1.5 and -2° angles of attack. At five atmospheres tunnel pressure full 
chord laminar flow was maintained up to a wing chord Reynolds number 
Re = 29 x 10 within an angle of attack range of a = ♦1°, with a minimum 
equivalent total drag coefficient at Rc = 27 x 10° of CD    ~  .00097 for 

^ain 

both wing surfaces (including equivalent suction drag) and a corresponding 
optimum suction quantity coefficient Co   = .00070. At a = +1.5° full 

chord laminar flow was maintained up to Rc = 22 x 10 and 24 x 10 , respec- 
tively. 

With increasing wing chord Reynolds numbers higher values 
of the nondiraensional suction quantity CQ ^/^ were required to maintain 

the boundary layer sufficiently stable under the crossflow conditions due 
to sweep. As a result, the profile drag decreased with Reynolds number 
at a considerably slower rate than the laminar friction drag of a flat 
plate. 

With increasing wing chord Reynolds numbers suction had 
to be extended further forward toward the leading edge, and increasing 
local suction rates (VQ/UOO) ^/RJ (for equivalent area suction) were then 
required ever the wing chord, particularly in the leading edge region. 

Calculation of the boundary layer development for several 
test points :.t angles of attack a = 1°, 0°, +1° indicate that the laminar 
boundary layer on a swept laminar suction wing is affected by both the 
stability of the tangential flow and the crossflow in the boundary layer. 
It appears that the crossflow stability limit Reynolds number cannot be 
exceeded as much without transition when the tangential flow is less stable, 
and vice versa. At a = 0° and Rc = 23 x 10

6 the minimum stability limit 
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(B) Summary (Continued) 

Reynolds number for the crossflow was exceeded by approximately 80 per- 
cent over a large percentage of the wing chord. 

Premature transition, as observed at the higher ReynoldK m-nbers, 
was probably caused (1) by the wind tunnel disturbance level (due to turbulence 
and noise) and (2) by the fact that most of the suction slots and suction holes 
were too wide for the high Reynolds number tests since the model was originally 
designed for much lower wing chord Reynolds numbers. The same fact probably 
was responsible for the frequently observed loss of full chord laninar flow 
with over-suction at the higher wing chord Reynolds numbers. At lower Reynolds 
numbers oversuction did not cause premature transition. 

(C) Notation 

b      average span of test region (measured normal to the free- 
stream direction) (ft) 

c      model chord (measured in the freestream direction) (ft.) 

^D     s TT» coefficient of drag, based on body v/etted area S, 

Cj)     =■   S   CQ (1 - C- ); coefficient of drag due to suction 
all a  power required to accelerate the 

chambers suction air to undisturbed velocity 
and pressure v/ithout losses 

%t "  GDS 
+ CD » coefficient of equivalent total drag 

Cj)     minimum equivalent total drag coefficient 
cmin 

Cn     wake drag coefficient 

Cf      laminar flat plate friction coefficient 

p - pOT 
CD      ~  — ; pressure coefficient with respect to ambient 

% static pressure p^ 
JP 

p - pro 
tpg    * — -; pressure coefficient of individual suction chamber 

a        »    with respect to ambient static pressure p 

Q; 
CQ     a -A.; suction coefficient of individual suction based on 

u=o  body wetted area ': 
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(C) Notation (Continued) 

Cr t   optinruni total suction coefficient corresponding to rainiiaum 

""■   equivalent total drag 

C-      *   S   Co ; total suction coefficient 
'        all   '4a 

chambers 

D      drag (lb.) 

H      = . .- .. ; boundary layer shape parameter 

11      average boundary layer shape parameter between the value 
at the wing trailing edge and the value at infinity 

Ilr,-    boundary la^er shape parameter at the wing trailing edge 

2 
p      static pressure (lb/ft ) 

2 
p      static pressure in individual suction chamber (lb/ft ) 
a 

2 
p      undisturbed freestream static pressure (lb/ft ) 

•X) 

1     2 2 
^m     * "r P U  undisturbed freestream dynamic pressure (lb/ft ) 

3 
Qa      suction quantity of individual suction chamber (ft /sec) 

r.      radius of metering hole (ft.) 

PU^c 
R      =     ' .; Reynolds number based on model chord 
C 

PU] ^H 
Ri,      « —~—.; Reynolds number of suction flow metering hol« 

Pus A/2 
R-      ■  ; Reynolds number of suction slot 

RSIj    minimum crossflow Reynolds number below which all boundary 
layer disturbances are damped 

„       _ P wmax yw«0,l Wm-x       ,,   „ 
KQ 2. " "   "mr'  ;  crossflow Reynolds number 

Rg      ■ ■ °" ; Reynolds number based on boundary layer momentum 
M-   thickness 
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(C) Notation (Contlcued) 

s      distance along airfoil surface (ft*) 

5 « b x c; area of test region (ft ) 

u velocity in boundary layer (at height y) tangential to 
the streamline at the outer edge of the boundary layer 
(ft/sec) 

%     average velocity through suction flow metering hole (ft/sec) 

us     average velocity through suction slot (ft/sec) 

U      velocity at outer edge of boundary layer (ft/sec) 

UTE    potential flow velocity at the wing trailing edge (ft/sec) 

U      undisturbed freestream velocity (ft/sec) 
00 

v0     suction velocity for equivalent area suction (ft/sec) 

Vj*    «-£/RC; nondlmenslonal suction velocity for equivalent area 
^     suction 

w      crossflow velocity in boundary layer (at height y) normal to 
the streanline at the outer edge of the boundary layer (ft/sec) 

w      maximura crossflow velocity (ft/sec) 

x distance along airfoil chord line (ft.) 

y distance nomal to the airfoil surface (ft.) 

01 angle of attack 

6 boundary layer thickness (ft.) 

6 

&* «  (1 - ipdyj boundary layer displacement thickness (ft.) 

6TE     boundary layer displacement thickness at the wing trailing 
edge (ft.) 

A      slot width measured normal to the wing element lines (ft.) 

6 

~ (1 - iT^y'' boundary layer momentum thickness (ft.) 
o 
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I (C) Notation (Continued) 

Sjg    boundary layer momentum thickness at the wing trailing 
edge (ft.) 

Ö      wake momentum thickness far behind the model (ft*) 

2 
P      absolute viscosity (lb-sec/ft ) 

P      density (lb-sec2/ft ) 

(D) Introduction 

On a swept laminar suction wing spanwise pressure gradients deflect 
ths boundary layer air, which has lost part of its energy, toward the regions of 

| low static pressure« As a result, the flow path of the boundary layer particles 
I on a swrot laminar suction wing differs from the potential flow streamline, and 
I a boundary layer crossflow develops in the direction normal to the potential 
I flow streamline. The boundary la/er cros flow profiles in this direction show 

inflection points and are thus dynamically highly unstable against external dts- 
I turbances at high wing chord Reynolds numbers. The boundary layer crossflow 

becomes unstable beyond the crossflow stability limit Reynolds number (Reference 
| 6 ), and the question then arises whether laminar flow can be maintained by 
I means of boundary layer suction through discrete slots up to high wing chord 
| Reynolds numbers. 
i 
I *   l . Full chord laminar flow was maintained on a 30° swept 12-percent- 
I thick symmetrical laminar suction wing by means of suction through many fine 

slots up to R^. ■ 13 x 10^ in the Michigan 5- by 7-foot tunnel (References 69 and 70) 
and in the Norair 1-  by 10-foot tunnel. According to theory, full length lami- 

1 nar flow should have been feasible up to higher wing chord Reynolds numbers 

I Vo with somewhat larger nondimensional suction velocities v0* > J^ /R  particu- 
1 "oo 

larly in the front part of the wing, provided the external turbulence was 
| further reduced. 

The purpose of the present experiments is the verification of 
full chord laminar flow on the 30° swept 12-percent-thick symmetrical low drag 
suction wing of Reference  2 at further increased Reynolds numbers in the 
Anses 12-foot pressure tunnel. 

jr 
| In order to correlate the actual crossflow Reynolds number of the 

tests on the 30-degree swept laminar suction wing with the theoretical sta- 
bility limit Reynolds number for the boundary layur crossflow (Reference 6 ), 
the boundary layer development over the model was calculated at several test 
points by the method of Reference 43. The results of these calculations are 
presented in the second part of this report. 

The model used in the wind tunnel experiments was designed for 
operation at a length Reynolds number RQ » ID7. During the experiments, length 
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(D) Introduction (Confinued) 

Reynolds numbers of 28 x 10" were attained with full chord laminar flow» In 
order to ascertain the effects of operating so far fron the design pointy 
calculations were nade to determine the inflow of each slot near the trailing 
edge at the highest length Reynolds numbers attained. The results of these 
calculation;: arc also included in this report« 

(E) Experimental Investigation 

(1) Exnerinental Setup 

Figure 1 shows the installation of the model in the NASA 
Ancs 12-root pressure tunnel. The model, of seven-foot chord and seven-foot 
span, was counted between endplates and was supported by struts extending from 
t.ic  endplates to the wind tunnel floor and ceiling. Two-dimensional flow along 
the wing span was maintained by shaping the inner walls of the endplates accord- 
ing to the undisturbed streamlines around an infinitely long yawing wing of the 
sarse cross section and sweep, working in infinite flow at a « 0°. 

Figure 2 and Tables I  and II give the cross section 
of the wing with details of the suction skin and chambers. The suction air 
passed through ninety-three fine slots of 0.004 to 0.005-inch width (located 
from 0.005 c to 0,37 c) into small spanwise grooves and holes, located under- 
neath the slotr>, into various suction chambers (Figure 2 ). The slots were 
cut with a diarohd slitting saw into a 0.030-inch-thick outer skin which was 
bonded onto a 0,25-inch-thick continuous inner skin. In order to be able to 
adjust the suction distribution in the front part of the wing within a wide 
range for various angles of attack and wing chord Reynolds numbers, individual 
suction chambers were provided for the first five slots, located from 0.005 c 
to 0.13 c. The remaining eighty-eight slots were connected to twelve suction 
chambers. From the various chambers, the suction air was ducted through indi- 
vidual flow measuring noasdes and tubes, passing through the lower support strut, 
into a common suction box (Figure 1 ) and through a long pipe and a sonic 
throat into the atmosphere. Since the experiments were conducted at five 
atmospheres tunnel pressure, suction could be operated by bleeding the suction 
air into the atmosphere. The total rate of suction was controlled by remotely 
varying the cross section of the sonic throat. The individual suction quanti- 
ties of the various suction chambers were remotely controlled by means of 
adjustable needle valves located at the inlet to the common suction box. 

In order to maintain uniform flow conditions in the test 
area with fully developed spanwise flow in the boundary layer, auxiliary suc- 
tion slots and chambers were added to both sides of the test area. The 
length of the auxiliary slots on the upstream side of the wing was chosen 
according to an analysis by Raetz (Reference 45 ) of the spanwise extent over 
which the boundary layer crossflow is not yet fully developed. The three suc- 
tion tubes from each measuring chamber and its two corresponding auxiliary 
chambers were connected upstream of the common suction box in such a manner 
that the spanwise suction rate in the area of the auxiliary chambers was the 
same as in the measuring region. 
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(1) Experimental Setup (Coi\£inued) 

A surface wavlness of 1/3000 Inch per Inch wave length or 
less was maintained. The test surface was sanded with No. 600 grade sandpaper 
and polished with sillccne wax. Dust was removed with a "tack-rag." 

(2) Measurements and Evaluation 

The objective of this Investigation was the study of the 
behavior of the laminar boundary layer on a swept wing with suction through 
many fine slots and the determination of the drag characteristics and auction 
requirements of this swept wing at various angles of attack 3 and Reynolds 
numbers Rg. At each of the various Reynolds numbers and angles of attack the 
suction quantities were varied over a range that included the point of minimum 
drag. The following measurements were taken. 

The pressure drop across the calibrated flow measuring noz- 
sles located at the downstream end of the various suction chambers was measured 
to evaluate the suction quantities Qg of the various suction chambers* The 
corresponding chamber static pressures were taken at the downstream end of the 
suction chambers. The lengthwise pressure distribution was recorded by means 
of twenty-four static pressure orifices located front 0.8 to 100 percent of the 
chord c. 

The boundary layer profile at the model trailing edge was 
measured by means of a boundary layer rakey consisting of seven flattened total 
pressure tubes, and by a static pressure orifice located at the same chord sta- 
tion but displaced by 0.3 inch in the spanwise direction. 

The state of the boundary layer in the test area was observed 
by means of microphones, connected to various wall static pressure orifices, and 
from the boundary layer measurements at the model trailing edge. 

The static pressures in the measuring nozzle, suction chambers 
and on the external wing surface and the total pressures from the boundary layer 
rake were displayed on a U-tube manometer panel. The pressure data were recorded 
photographically on 70-nin roll film, which was then read on a film reading 
machine. The final recording was on keypunched cards suitable for use on an IBM 
704 digital computer. 

The undisturbed freestream static and dynamic pressures p 

and q^ were evaluated by a comparison of the measured and theoretical wing pres- 
sure distributions. At angle of attack, p and q were selected so as to cause 

OB 00 

agreement of the measured wing pressure distributions at the trailing edge. In 
addition, it was checked that the variation of the measured pressure at a given 
orifice location was linear with angle of attack. 

From the measured suction quantities Qg of -he varicas suc- 

tion chambers the suction quantity coefficients C0 * Qa/U^bc oi the individual 
<a 

chambers and the total suction quantity coefficient Cq «   I   CQ were 
all    a 

chambers 
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(2) Measurements and Evaluation (Continued) 

evaluated. With the nondimensional coefficient of the pressure rise across 
the suction compressor C«  « (p. - p Vb to accelerate the suction air 

Isenttopically to freessream pressure and velocity the equivalent suction 
drag coefficient is 

chambers 

The wake drag coefficient was evaluated from the measured 
momentum thickness 6TE of the boundary layer at the wing trailing edge accord« 

ing to Squire and Young: 

CDw  T"  7 TE (--^-) c   c     U^ 

where H is the value of H » (Ö*/®) in the wake between the trailing edge and 
infinity; H « 1.4 and 1.0 shortly downstream of the wing trailing edge and at 
infinity, respectively, so that H + 2 «3.2 and 

2eT£ /
U
TEN3.2 

^ ■ -7^ ^ 

The equivalent total drag coefficient of the wing is, then, 

cDt " CDw + CIV 

(3) Experimental Results 

The pressure distributions measured at various angles of 
attack a are shown in Figure 4 . In Figures  5 through 10 are shown 
representative variations of the equivalent suction drag CQ , wake drap Cn 

and equivalent total drag Cj)t with total suction coefficient CQJ. for various 

angles of attack ot  and wing chord Reynolds numbers Rc. The figures illustrate 

the two regimes of flow characteristic of the variation of the equivalent total 
drag coefficient with increasing rate of suction flow« The low-suction regime 
of flow is characterized by rapidly decreasing wake drag as increasing suction 
stabilizes the boundary layer and reduces the number of occurances of turbulent 
buzsts« As suction is increased further, and turbulent bursts are eliminated 
entirely the laminar boundary layer is merely thinned by additional suction. 
Since the decrease of wake drag due to the thinning of the laminar boundary 
layer is inadequate to compensate for the additional equivalent drag due to 
suction the equivalent total drag increases. Thus, a minimum equivalent total 

drag cDt . occurs at a given optimum total suction flow coefficient CQ  , 
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(3) Experlnent Results (Continued) 

The vavistlon with wing chord Reynolds nuraber Rc of the 

rainiraum equivalent total drag OQ*        of the upper wing surface at angles of 

attack a «= 0 and ±1° is shown in Figure 11 and the variation of the cor- 
responding optimum total suction flow coefficient CQ t with Rc is shown 

in Figure 12. Previous results from tests in ths University of Michigan 
5- by 7»foot wind tunnel (Reference 70 ) and the Norair 7- by 10-foot wind 
tunnel are also shown. The variation of CJK   with R_ at or = ±1.5, -2° is 
shown in Figure 13, ^nin     c 

Figure 14 shows faired plots of the experimental values 
CD /kg for different angles of attack and Reynolds numbers. Chordwise dis- 

tributions of the nondlmenslonal equivalent area suction velocity 

v 
v0* ■ ~ /Rc are shown in Figure 15 for various representative Reynolds 

00 

numbers at the angles of attack studied. 

(F) Theoretical Analysis 

(1) Computational Procedure 

(a) Boundary Layer Development 

The particular test points (run numbers) chosen for 
study are listed in Table III . Angles of attack <*=-!, 0 and +1 degrees, 
at which full chord laminar flow was maintained up to 25 x 106 to 29 x  106 

wing chord Reynolds numbers were selected. Various Reynolds numbers were chosen 
at each angle of attack. At a given Reynolds numbe* and angle of attack the test 

point having a succion coefficient closest to or somewhat larger than the 
optimum (i.e., the suction coefficient for minimum equivalent total drag) was 
selected. Finally, the test points of highest suction coelf^ient at the 
maximum and minimum Reynolds numbers were included to give an indication of 
the effect of oversuction. 

Development of the boundary layer for the selected 
test runs was calculated by means of RaetzYs method (Reference 45 ) on an 
IBM 704 high speed digital computer. The method calculates boundary layer 
profiles at a large number of chordwise steps by a difference method. Numeri- 
cal data defining the boundary conditions is required at each point* For com- 
putational stability, these data must be smooth and consistent, and their 
derivatives are restricted in magnitude so that the differences between points 
are not too large. Figure 16 is a comparison of the measured pressure distri- 
butions and the approximations used for the calculations. The nondimensior'ai 
inflow velocity distribution used for a given run is illustrated along with 
the sunmary of resulcs for the run. Total suction quantity of the distribu- 
tions used for the calculations agreed with the measured total suction quan- 
tities within plus or minus 1 percent. 
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(H) Boundary Layer Development (Continued) 

Since the model was originally designed to be tested 
at a wing chord Reynolds number Rc = 10' and was actually test*d up to 

Re « 28 x 10 , the chordwise suction inflow distribution at the high Reynolds 
number would not be uniform. Preliminary calculations showed that it would be 
of a "sawtooth" nature, as shown in Figure 24.  Such a distribution would be 
very difficult to approximate in the manner required by the program, and the 
large differences Involved would strain the accuracy of the computations 
(especially toward the rear of the airfoil). 

(b) Off-Design SucHon Inflow 

Calculation of the effects of operating the model under 
conditions far from *:hese for which it was desi^ ed required determination of 
the suction flow through each individual slot. The model geometry is given in 
Table II  and the external flow conditions are the experimental values. The 
pressure drops through the model slot and hole combinations were determined by 
plotting surface and suction chamber pressure coefficients. The suction flow 
rate could then be evaluated from existing data on the pressure drop through 
slots and holes as a iuim-'tion of flow rate (Reference 73, pages 307 and 310). 
This method requires an iteratl/e calculation procedure»  Slot Reynolds num- 
bers Rs (based on the average velocity through the slot and the half width of 
the slot) and hole Reynolds numbers Rf, (based on the average velocity through 
the hole and the hole radius) were calculated directly, once the suction flow 
rate through the slot and hole combination was known. 

(2) Computation Results 

(a) Boundary Layer Development 

A representative example of the computed development of 
the laminar boundary layer is given in Figures 17  and 18.  Figure 17  sum- 
marizes the development of the boundary layer crossfiow as represented by the 
crossflow Reynolds number RQ^ (based on the maximum crossfiow velocity w 

and the height of the crossfiow boundary layer where the crossfiow velocity 
w «= 0.1 WJ^JJ), Also included is the minimum stability limit Reynolds number 

^SL (below which all boundary layer disturbances are damped) as defined by the 

calculations in Reference 6 and a Reynolds number that is 67 percent greater 
than RgL. The asSi -ed distribution of the nondlmensional suction velocity 

v0* for equivalent area suction is Included in this figure. 

Figure 17  shows an apparent break in the crossfiow 
development at the wing position of minimum pressure and the beginning of the 
rear pressure rise at approximately 65 percent chord. Due to the change in 
sign of the pressure gradient in this region, the boundary layer crossfiow, 
which is directed inboard in the region of decreasing pressure, changes direc- 
tion downstream of 65 percent chord and flows tovard the wing tip in the 
region of increasing pressure. At tht Jeginning of the rear pressure rise 
the crossfiow profile develops a double loop, the stability of which is, as 

>et, undefined. The crossfiow Reynolds number is defined only in its absolute 
magnitude in ♦■his report. 
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(a) Boundary Layer Development (Continued) 

Figure 18 Illustrates th« dev«lopment of the tan- 
gential boundary layer flow as represented by the tnonentum thickness Reynolds 
number R* (based on local potential velocity U and boundary layer momentum 

thickness 3) and the shape parameter H ■ 6*/9. vhere 6* » displacement: thick» 
ness of the boundary layer* 

Figures 19, 20 and 21 show the variation of the 
ratio of the crossflow Reynolds number RQ j to the minimum stability limit 

Reynolds number E^ along the chord length for a * 0, -1 and +1 degrees angle 

of attack. These figures Illustrate the amount by which the stability limit 
Reynolds number was exceeded during the Ames experiments on the 30-degree 
swept laminar suction wing« 

Comparison of the calculated trailing edge boundary 
layer velocity profile with the measured velocities is given in Figure 22 for 
the case whose boundary layer development was illustrated in Figures 17 and 
18 . In Ta *e III the calculated momentum thickness @ is compared with the 

momentum thickness as determined from the measured velocity points for all the 
cases studied theoretically« The effect of the boundary layer crossflow 
velocity is not Included in the velocity profiles as drawn« Since the cross- 
flow velocity» under the conditions surlied, is small when compared to the 
tangential boundary layer velocity component (Reference 6 ), the resulting 
error Is usually small« 

(b) Off-Design Suction Inflow 

Calculations of the detailed suction inflow charac- 
teristics of the model at off-design conditions were performed for six test 
points that represent the furthest deviation from design conditions. Figure 
23 is a representative superposition of the suction chamber pressure coeffi- 
cients on a plot of the external wing surface pressure distribution« Like 
figures were used in the cases studied to evaluate the local suction velocities 
for equivalent area suction. Calculations were performed for the last four 
chambers in each case, providing an adequate illustration of the effect of fhe 
off-design conditions. 

Figure 24 shows the variation of the local inflow 
velocity along the chord for the case whose pressure distribution was illus- 
trated in Figure 23, Table IV lists, for this particular case, the non- 
dimensional suction velocity v0* for equivalent area suction, the Reynolds 

numbers Rs of the flow through the slots and the Reynolds numbers R-n of the 

flow through the metering holes. In addition, the computed and measured 
suction coefficients CQa for the  various suction chambers are listed. 

(G) Discussion 

At angles of attack or ■ 0 and ±1°, full length laminar flow 
was observed on a 30° swept laminar suction wing in the NASA Ames 12-foot 
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(G) Discussion (Continued) 

pressure wind tunnel up to a wing chord Reynolds number Rc = 29 x 10 , with a 

minimum wing equivalent total drag coefficient Cpj.   * 0.00097 (including 
equivalent suction drag) for both wing surfaces together at » « 1° and 

Rc » 28 x 10 (Figures 11,  I2and 13 ). The corresponding suction quantity 
coefficient was CQ t ■ 0,00070 (for both wing surfaces). At Reynolds numbers 

above 28 x 10 tunnel noise, rather than tunnel turbulence seemed to cause 
turbulent bursts and a rising drag at a c 0 and ±1°,* At cr « +1.5 and -1,5° 
full chord laminar flow was maintained up to Rc = 22 x 10

6 and 24 x 10 , 

respectively, and up to 21 x 10 at or ■ 2°, The drag was somewhat higher at 
these angles of attack than at Of s 0 and -1°, At the larger negative angles 
of attack the increased flow acceleration over the front part of the wing 
(see chordwise pressure distributions, Figure 4 ) caused an increased span- 
wise pressure gradient with a correspondingly stronger boundary layer cross- 
flow in this area, which reduced the maximum Reynolds number vith full chord 
laminar flow. 

At a = 1.5° the occurence of a negative pressure peak close to 
the leading edge followed by local flow deceleration probably caused increased 
Instability of the boundary layer against Tollmien-Schlicting disturbances, 
causing transition and drag rise at somewhat lower Reynolds numbers than at 
a = 0 and ±1°. 

From the fa red plots of CD /P, and CQ /&<*  for different angles 
of attack and Reynolds numbers (Figure 14 ), it can be seen that in order to 
maintain laminar flow on a swept wing under crossflow conditions, increasingly 
higher minimum values of CQ /RC were required with increasing Reynolds numbers, 
as predicted by theory (Chapter 13 of Reference 47 ), For this reason the 
drag decreased with increasing Reynolds number at a considerably slower rate 
than the laminar friction drag of a flat plate. 

In order to maintain full chord laminar flow at Reynolds numbers 
up to Rc » 11 x 10° and or « 0 and 1°, no suction had been previously required 
upstream of the 0,25 chord station (first University of Michigan experiments, 
Reference 69 ), and weak suction was adequate In the region of the flat pres- 
sure distribution, followed by stronger suction in the region of the rear 
pressure rise, Wit^ increasing Reynolds numbers, however, suction had to be 
applied further fo..«mrd toward the leading edge, and higher nondimensional 
equivalent area suction velocities v0* were required over the whole wing chord 

*An analysis of the noise level of the Ames 12-foot pressure wind tunnel 
(Reference 71 ) at Rc * 28 x 10" and five atmospheres tunnel pressure gave 

a ratio of root mean square value of mean particle velocity to undisturbed 

2 .4 
flow velocity u' /U = 2.4 x 10  due to acoustical vibrations, as compared 

with  u^/U s 10"    due to tunnel turbulence (Reference 71 ), 
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(G) Dtscusslon (Continued) 

(Figure 15), particularly in the front part of the wing, in order to achieve 
full chord laminar flow, as predicted by theory« 

At greater angles of attack higher nondimensional equivalent 
area suction velocities v0* had to be applied on the whole upper wing surface 
and especially in the area of the negative pressure peak close to the leading 
edge at cr « 1,5°. At larger negative angles of attack, increasingly stronger 
suction was necessary in the area of the strong flow acceleration in the front 
part of the wing to prevent excessive crossflow instability in this area. On 
the other hand, the rear pressure rise toward the trailing edge decreased 
somewhat at larger negative angles of attack, resulting in correspondingly 
smaller suction quantities in this area* 

In the region of the flat pressure distribution upstream of the 
location of minimum pressure, the ratio of crossflow Reynolds number RQ . to 

the minimum stability limit Reynolds number RSL waa quite consistent- as Reyn- 

olds number was varied at a given angle of attack (Figures 19 , 20 4nd 21 ). 
In general, the crossflow Reynolds number was greater than the minimum sta- 
bility limit Reynolds number by 50 to 70 percent in the nose region (up to 
approximately 5 percent in this case) and seems to be Independent of angle 
of attack. Downstream of this region, between 5 and 60 percent chord, the 
ratio of the crossflow Reynolds number to the stability limit Reynolds number 
seems to be a function of angle of attack. At an angle of attack or s 0 degree 
(Figure ig ), R^j. increased until it exceeded RSL by approximately 100 per- 

cent; at or * -1 degree the ratio of RQ , to RgL increased to approximately 2.5 

(Figure 20)j an<i at a « +1 degree RQ J decreased until it was approximately 

equal to the stability limit Reynolds number at the 60 percent chord station. 
At the low wing chord Reynolds number and angles of attack or s o and -1 
degrees, the trends as Just described were surpassed locally. Specifically, 
at or • 0 degree and Rc » 13.9 x 10

6 (Figure 19) the minimum stability limit 

Reynolds number Rg^ was exceeded by as much as 150 percent over part of the 

forward portion of the model, but this ratio was reduced by additional suc- 
tion to 100 percent by the time the location of mlnimum pressure was reached. 
At an angle of attack a ■ -I degree (Figure 20 ) and Reynolds number 

14*1 x 10 the minimum stability limit Reynolds number was exceeded by 140 
percent at the nose of the model, followed by increased suction which rapidly 
reduced the ratio Rp »/RgL t0  va^ues somewhat below those achieved at higher 

Reynolds numbers. 

In the region of the model downstream of the location of mini- 
mum pressure there was no such systematic variation either with angle of 
attack or with wing chord Reynolds number at a given angle of attack. The 
majority of the cases studied shewed an increase of the crossflow Reynolds 
number until RQ ^ was approximately 100 to 150 percent greater than the mini- 
mum stability limit Reynolds number at the trailing end of the suction region. 
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(G) Discussion (Continued) 

According to Table 111 the momentum thickness of the boundary 
layer velocity profiles as calculated and measured at the model trailing edge 
agreed fairly closely, in most cases. However, the agreement between the 
calculated and measured velocity profiles was not good in many of the cases. 
On the model the total pressure rake used to measure the final boundary layer 
profile was fitted to the model at the trailing edge. The last slot was at 
97 percent chord and slot spacing «as 0.55 percent chord. Thus, the trailing 
edge rake was about 5.5 slot spacing lengths aft of the last slot. An attempt 
was made to approximate the effect of this nonsuction area by rapidly reducing 
the suction aft of 97 percent chord in the calculations. It can be seen in 
Figures 19  through 21  that the effect of reducing suction in this area was 
to decrease the minimum stability limit Reynolds number RgL. Thus, In the 

physical case, RQ j rapidly surpassed RqL to such an extent that transition 

occurred in the vicinity of the wing trriling edge; turbulent bursts were, 
in fact, observed close to the trailing edge of the wing during the tests in 
question at those runs near minimum drag. 

Figure 24 Illustrates the "sawtooth" suction inflow velocity 
distributlor. (for equivalent area suction) caused by off-design operation of 
the model at high Reynolds numbers, and, In fact, Indicates outflow from the 
first slots of three chambers. The calculations (see Table IV for repre- 
sentative results) showed that the Reynolds numbers (based on average velo- 
city through the slot and half of the slot width) of the slots at the aft 
end of the suction chambers ranged from Rs = 65 to 92 with the slots having 
Reynolds numbers greater than 80 In many cases. The corresponding hole 
Reynolds numbers ranged from R^ * 600 to 850 

Ir Reference 74 (page 136), Schiller reports that vortices 
were formed at the entrance of a sharp-Inlet tube at a tube Reynolds number 

= 280, Schiller's experiments were conducted with water that had 
v 

been allowed to settle for several hours In order to ensure steady flow con- 
ditions at the entrance of the tube. During similar tube experiments Davles 
and White (Reference 74 page 151) "sed strongly disturbed water and reported 
the formation of similar vortices at the beginning of a sharp-inlet tube at 
Reynolds numbers one-half of those reported for Schiller's experiments.  In 
Reference 75 Rogers showed that the flow through holes of small length-to- 
diameter ratio detaches from the surface of the hole at its inlet. As a 
result, unsteady flow may develop in the hole at hole Reynolds numbers 
R^ = 600 to 800 for the range of length-to-diameter ratios of interest, as 

long as the hole inlet is sharp. 

If it is assumed that a slot and hole of equal hydraulic radius 
and with sharp inlets exhibit similar flow characteristics, the flow phenomena 
as discussed above for holes will occur at slot Reynolds numbers Rs (based on 

average slot velocity and one-half width) equal to one-half of the corres- 
ponding hole Reynolds numbers R^. Therefore, vortices may develop at the 

leading edge of a slot at a Reynolds number R^ « 75, as long as the leading 
edge of the suction slot Is sharp (as during the Present experiments). 
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(G)    DlscuMton (Continued) 

i 

,■■ 

From Che above it appears that inlet vortices and subsequent 
unsteady flow may havu occurred in the slots at the aft end of the suction 
chanbcrs and almost certainly 4n the holes« The outflow in the forward 
portions of the suction chambers and the unsteady flow through the slots 
and holes at the aft portion of the suction chambers due to off-design 
operation of the model at high chord Reynolds numbers may thus have gener- 

| ated disturbances in ttu* boundary layer, particularly in the case of 
oversucf.ion« 

The results shown present essentially the overall development 
of the boundary layer along the chord, using equivalent area suction. 
Further refined calculations would be required to evaluate the local boundary 
layer development, such as in the vicinity of Che wing leading edge, etc. 
In order to obtain the local boundary layer development fiom slot to slot, 
suction through individual slots would have to be used, taking into account 
sink effects at Che slots. 
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CHAPTER B.  EXPERIMENTAL INVESTIGATION OF A 4-PERCENT-THICK STRAIGHT 
LAMINAR SUCTION WING OF 17-FoöT CHORQ IN THE NORAIR 7- BY 
10-FOOT WIND TUNNEL 

L. W. Gross 
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(B) Summary 

Full chord laminar flow and very low wing equivalent total drags 
were maintained on a 4-percent-thick unswept suction wing of 17-foot chord 
up to a wing chord Reynolds number of 26 x 10 by means of suction through 100 
fine slots. Without tunnel wall fairings, the minimum wing equivalent total 
drag coefficient for one wing surface (including the equivalent suction drag) 
was Cn,.   = .000375 at Rc =* 25 x 10

6 and 0=0 degree angle of attack; the 
"■min 

corresponding suction quantity coefficient (based on wing projected area) was 
Cn   = .000130. The maximum wing chord Reynoldb ..umber with full chord laminar 

Hopt 
flow was twice as large as that measured in the same ttnnel on a 30-degree 
swept laminar suction wing of 7-foot chord and was probably limited by wind 
tunnel noise as well as by the number of suction slots used. The maximum 
attainable wing chord Reynolds number with full chord laminar flow was only 
slightly Influenced by moderate changes of the external pressure distribution. 
These changes were obtained by varying the angle of attack and by putting fair- 
ings on thb tunnel walls opposite the model. An increased overall flow accelera- 
tion along the wing chord resulted In somewhat higher wing chord Reynolds numbers 
with full chord laminar flow and, conversely, the maximum wing chord Reynolds 
number with 100 percent laminar flow was somewhat reduced when the flow was more 
strongly decelerated along the chord, as compared with the model at or = 0 degree 
angle of attack without tunnel wall fairings present. 

(C) Notation 

c        chord length 

CDS     -   E   Cn (1 - Cp ); equivalent drag due to suction 
all '  power required to accelerate the 

chambers suction air without losses to ] 
undisturbed velocity and pressure 
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I 
(C) HoUtion (Condnued) 

c0t    " C0 + C|j^i equivalent total drag coefficient 

Cju    oinimra equivalent total drag coefficient 

QOy    wake drag coefficient 

P m  Pm 
CL.     «   i.r ? pressure coefficient 

Pm    m   P 
Cp     « a  ISj pressure coefficient of individual suction chamber 
8a       q«   with respect to p^. 

Qa 
CQa    * tf s '8 8l,ction coefficient of individual suction cFurober 

CQt    ■   Z       Crt ; total suction coefficient 
all 

chambers 

Cn     total suction coefficient corresponding to rainiimm equivalent 
^   total drag 

^ b span of suction chamber 

p static pressure, with respect to p 

p static pressure in suction chamber, with respect to p^ 

p undisturbed freestream static pressure CO 

2 
q^     " 1/2 p^ U^ ; undisturbed freestream dynamic pressure 

Qa     suction quantity of each suction chamber 

P U c 
Rc     « n . a    •  Reynolds number based on chord 

S      area of test portion of model 

Sc     « b • c 

u boundary layer velocity at height y 

tt Ü      velocity at outer edge of boundary layer 
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(C) Notation (Continued) 

Vm velocity of flow at infinity 

v0     equivalent area suction velocity 

v0     " TT" ^c» nondimensional equivalent area suction velocity 

x distance along chord 

y distance normal to si-rface of model 

Y model ordinate 

or angle of attack 

p density 

ß absolute viscosity 

(D) Introduction 

In connection with the application of low drag boundary layer suc- 
tion to large airplanes« the question arises concerning the feasibility of full 
chord laminar flow on the wings of such airplanes at high Reynolds numbers by 
means of boundary layer suction. According to theory (Reference 47), suction 
will increase the stability limit Reynolds number of the boundary layer and 
reduce the amplification of oscillations introduced into the boundary layer; 
at the same time its thickness is reduced. As a result the application of area 
suction should enable full length laminar flow to very high length Reynolds 
numbers (Reference 47), provided external disturbances due to turbulence, 
sound, etc.» are minimized. How far the stability limit Reynolds number of 
the boundary layer can be exceeded without transition to turbulent flow is 
critically dependent on the magnitude of the external disturbances. Theories 
describing the growth of boundary layer oscillations (Reference  1) give an 
improved physical insight into the phenomena leading to transition. 

In order to verify how effective area suction is in maintaining 
full chord laminar flow at high Reynolds numbers in the absence of large exter- 
nal pressure gradients, a 4-percent-thick symmetrical straight laminar suction 
wing of 17-foot constant chord and 7-foot span was investigated in the Norair 
7- by 10-foot low turbulence wind tunnel. 

(E) Experimental Setup 

The airfoil selected was a 4-percent-thick symmetrical section 
interpolated between a biconvex wing and an NACA 66-004 airfoil in such a 
manner that the test section closely resembles a biconvex wing. A large wing 
chord of 17 feet was chosen in order to achieve high wing chord Reynolds num- 
bers at relatively low tunnel speeds and correspondingly reduced external I 
disturbances from tunnel turbulence and sound. The maximum permissible wing 
chord (17 feet) was dictated by the length of the wind tunnel test section 
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(E) Experimental Setup (Continued) 

and by the spread of the turbulent wedges on the wing on both sides of the 
model test area. The span of the vertically mounted wing was seven feet. 

A thin wing (4-percent-thickness ratio) was selected in order to 
mlnlmlcc chordwlse pressure gradients on the test surface during the first phase 
of the investigation. Figure 25 shows the cross section of the wing with details 
of the suction system. During the second phase fairings of various shapes 
(contour and coordinates of the fairings are shown in Figure 28 and Table VII ) 
were inserted on both side walls of the wind tunnel test section in the region 
of the test wing to increase the chordwlse pressure gradients on the model. 
The minimum pressure peaks on the wing with fairings numbered 1 and 2 were Itocated 
at approximately 45 and 20 percent of the wing chord, respectively. Figure 
35  compares the chordwlse pressure distributions at an angle of attack 
o- = 0° as measured during the tests. 

Area suction was closely approached by means of suction through 
100 fine slots located from 1 to 97.2 percent of the wing chord in the laml- 
narized test, area outside the turbulent wedges on the wing, originating from the 
junctures between the wing leading edge and the tunnel floor and ceiling 
(Figure 26). The span of the slots decreased from 77.4 Inches for slot 1 to 
15.2 inche« for slot 100, close to the wing trailing edge. 

The suction air was ducted through the slots, cut into a thin 
outer skin which was bonded to a thicker inner skin, into spanwlse grooves and 
through metering holes (drilled through the inner skin) into 16 suction chambers 
(Figure 23 ) and through flow measuring nozzles and tubes Into a consnon suction 
ho:,  and finally to the suction compressor. The suction quantities of the various 
chambers could be adjusted individually by means of needle valves at the entrance 
to the comnon suction box. The total rate of suction could be varied by chang- 
ing the rpm of the suction compressor.  In addition, bleed air could be ducted 
into the comnon suction box to change the overall suction quantity and avoid 
surge of the suction compressor. 

The design of the suction system was based on boundary layer 
calculations with suction, using Raetz's method (Reference 70), for a design 
wing chord Reynolds number Rc - 25 x 10^ at Qf = 0.25 degree sngle of attack, 
with the chordwlse pressure distribution as calculated by Theodorsen's method 
(Reference 80). At cr = 0.25 degree the occurrence of a slight negative pres- 
sure peak close the the wing leading edge required suction forward to I percent 
of the wing chord to avoid laminai separation and transition in the front part 
of the wing.  In the region of the rather flat pressure distribution from 
approximately 5 to 60 percent chord relatively weak suction was found to be adequate 
to maintain laminar flow with suction slots of approximately 2 percent chord 
spacing and 0.004- to 0.005-Inch width.  In the region of the rear pressure 
rise downstream of 60 percent chord increased suction is necessary to avoid 
premature transition in this area, requiring more closely spaced slots of 
0.005- to 0,008-Inch width. 
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(F) Measurements and Evrluatlon 

The objective of this investigation was the study of the 
behavior of the laminar boundary layei at high Reynolds numbers on a thin 
laminar suction wing with suction through many fine slots and the determi- 
nation of the drag characteristics and suction requirements of this wing (with 
and without tunnel wall fairings) at various angles of attack of  and wing chord 
Reynolds numbers Rc. For the various Reynolds numbers and angles of attack 
the suction quantities were varied. The following measurements were made. 

The pressure drop across calibrated flow measuring nossles 
located at the downstream end of the various suction chambers tras measured to 
evaluate the suction quantities Qa of the various suction chambers. The cor- 

responding chamber static pressures were taken at the downstream end of the 
suction chambers. The boundary layer profile at the wing trailing edge was 
measured by means of a trailing edge rake, consisting of twelve flattened 
total pressure tubes, and by a static pressure orifice located at the same 
chord station but displaced by 0.5 inch in spanwise direction. The chordwise 
pressure distribution was recorded by means of twenty-six static pressure 
orifices located from 0.2 to 99.75 percent chord. In order to provide suffi- 
cient test points In the front part of the wing at angles of attack, six ori- 
fices were located within the first 4 percent of the wing chord. 

The state of the boundary layer in the test area was observed 
by means of microphones, connected to the various wall static pressure ori- 
fices, and from the boundary layer measurements at the wing trailing edge. 

The static pressures in the measuring nozzles, suction chambers 
and on the external wing surface were displayed on a first U-tube manometer 
panel. The trailing edge readings (total and static pressures) were recorded 
on a second, separa e U-tube manometer board. In this manner fluctuations of 
the trailing edge total pressures did not influence the remaining pressure 
readings. The pressure data were recorded photographically on /0-mm, micro- 
file film, which was then read on an automatic film-reading raachlne. The 
final recording w,n- on keypunched cards suitable for use on an IBM 704 digital 
computer. 

The undisturbed freestream static and dynamic pressures p and 
00 

q^, for the wing without tunnel wall fairings, were evaluated from calculations 

of the nunnel wall corrections (Reference 81 ), In the case of the model with 
fairings a., arbitrary minimum static pressure coefficient CD . was specified 

on the model at the location of minimum pressure. The pressure distribution 
would then correspond to that around a thicker airfoil, p and q were then 

evaluated from Cp   and the freestream total pressure in the test section of 

the tunnel. 

From the measured suction quantities Q in the various suction 

Qa 
chambers the suction quantity coefficients Cn » „- T-""— of the individual 

^a  U b c 
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(F) MtaturwBtnts and Evaluation (Continued) 

chambers and the total auction quantity coefficient CQt »   E   CQ^ were 
all 

chambers 
evaluated.   With the nondiraenslonal coefficient of the pressure rise across 
the suction compressor Cn. » (p. * p )/q to accelerate the suction air isen- r8a    •    mm 
tropically to frcestream velocity and pressure the equivalent suction drag coeff!• 
cient is 

cDfi "        ^       CQ« (1 * SB  ^ 8 all        ^ 8ä 

chafers 

The wake drag coefficient was evaluated from the measured momentum thickness 
9TE of the boundary layer at the wing trailing edge according to Squire and 

Young: 

r 2Qm     * UTE^
2 

% - -T"m 7 9TE ('ür) 

6* 
where H is the value of H ■ (-^-) In the wake between the trailing edge and 

infinity? KJE ^ ^* and 1.0 shcrtly downstream of the wing trailing edge and 

at inflnify, respectively, so that H + 2 « 3.2 and 

2 eTE "TE, * 

The equivalent total drug coefficient of the wing is, then, 

CDt * ^ + CDS* 

(G) Experimental Results 

The pressure distributions of the basic model in the wind tunrel 
with no fairings on the walls are given in Figures 29 and 30 . The pressure 
distributions for the case of the model with Fairing Number 1 installed on the 
wind tunnel walls are given in Figures 31  and 32 and comparable information 
for the case of the model with Fairing Number 2 is given in Figures 33 and 
34, in Figure 35 the pressure distributions at an angle of attack a > 0° are 
shown for the three cases studied to allow &  comparison between them. 

Figures 36 through 42 present representative examples of the 
variation of the equivalent suction drag coefficient Cpg, wake drag coefficient 

CDW «ir'd equivalent total drag coefficient CQ as functions of total suction 

volume coefficient CQ . The figures were all chosen from the case of the model 

uith no fairing but illustrate the behavior cf these parameters in the other 
cases as well. 
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(G) Experlnental Results (Continued) 

The variation of the rainimum equivalent total drag coefficient 
C0   (including equivalent suction drag) and the corresponding suction coef- 

nin 
ficlent for nininum equivalent total drag CQ   with wing chord Reynolds nunber 

Rc at given angles of attack a are shown in Figures 43 and 44 , respectively, 

for the case of the model with no fairing. For the case of the model with 
Fairing Number 1 installed, the variations of Cn..   and Cn   with R,. are given 

tmin    ^opt     c 

in Figures 45 and 46 .while for the case of the model with Fairing Number 2 
installed the same information is given in Figures 47  and 48 . 

In Figures 49 through 55 are shown representative chordwise 
distrlLutions of the nondlmensional suction velocity v  for equivalent 

area suction. The distributions shown were computed from the suction quantities 
of the test points closest to minimum equivalent total drag coefficient Cn.  . 

Figures 49 , 50 and 51 show the v0 distributions for the three cases studied 

(basic model and with Fairings Number 1 and 2) at an angle of attack « = 0° and 
for several chord Reynolds numbers R . In Figures 52 f 53 and 54 the v 

distributions are shown at a given Reynolds number, Rc ^ 21 x 10 , and for 

several angles of attack a. Finally, the v0 distributions of the three models 

at the angle of attack of » 0° and Reynolds number R. ^ 21 x 10 are compared in 

Figure 55 . This illustrates the differences of suction velocity distribution 
required by the different pressure distributions of the three cases« 

Boundary layer velocity profiles as measured at the trailing edge 
of the test model under the three conditions studied are presented in Figures 
56 through 63 for varying Reynolds numbers at an angle of attack ar = 0°. The 
boundary layer velocity profiles of Figures 56, 57, and 58, correspond to the suc- 
tion velocity v0* distributions of Figures 49, 50, and 51, respectively. 

In order to illustrate the effect of increasing suction at a given 
angle of attack "' and Reynolds number Rc on the trailing edge boundary layer 

velocity profiles, selected series of test points were chosen from the case of 
the test with Fairiug number 2, These velocity profiles are shown in Figures 
59 through 63 . 

(H) Discussion 

(1) Bas-'c Model 

At an angle of attack 0=0 degree full chord laminar flow 
was nninJiained up to a wing chord Reynolds number R of approximately 28 x 10" 
(Figrres 43 and 44), At this Reynolds number, however, external disturbances 
(tunnel turbulence and noise) were of sufficient magnitude to cause turbulent 
hiTF.ts. As a result, increased suction quantities were required to maintain 
extensive laninnr flow and, as a consequence, the equivalent total drag coef- 
ficient was ^.br.tantially higher than the minimum at this angle of attack. 
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(H) SlSSSS&iSS (Contlnutd) 

Kiniaua equivalent total drag coefficient at an angle of 
attack or • 0 degree occurred at a Reynolds ntcaber Rc » 26 x 10

6, the equiva- 
lent total drag coefficient (Including equivalent suction drag) 

CD   " 3,73 x 10"4 being achieved at a total suction coefficient 
tain 

CQ   • 1.3 x 10* (for one wing surface). Negative angles of attack exhibited 
.4 

progressively lower drag coefficients, the lowest being CD   ■ 3.07 x 10  at 
6 -4 ^nin 

Rc ■ 28 x 10 and CQ   • 0.9 x 10* for an angle of attack ct » -1.5 degrees. 

Due to the very small leading edge radius of the model 
(R « 0*05 inch), a negative pressure peak was present at the leading ecge of ths 
model for all positive angles of attack investigated (c'hordwise pressure distri- 
butions are shown in Figures 29 and 31 ). At an angle of attack » «0.26 
degree a pressure rise of 0.195 q was present over the first 4 percent chord. 

CD 

At a ■ 0.4 degree end 0.5 degree this front pressure rise Increased to 0.276 q 

and 0*377 q^, respectively. With suction applied from 1 percent chord, full 

chord laminar flow was maintained at an angle of attack a « o.26 degree up to a 

Reynolds number Rc ■ 25.5 x 10 with C0t   « 4,0 x ID*
4 and CQ0pt = 1.45 x 10* , 

The strong negative pressure peak limited the maximum attainable Reynolds number 
with full chord laminar flow to Rc » 23.5 x 106 for or K 0.4 degree and 

Rc • 11 x 10 for cr « 0.5 degree. 

(2) Model with Fairing Number 1 

Compared with the besic model, Fairing Number 1 Induced more 
highly accelerated flow over the forward portion of the model, followed by 
stronger decelerated flow over the aft portion of the model and a lower overall 
pressure« From Figures 45  and 46 the minimum equivalent total drag coeffi- 
cient (including equivalent suction drag) at an angle of attack fv = o degree 

uac Op*   ■ 4.15 x 10* at a Reynolds number Rc ■ 26 x 10 and a suction coef- 

ficient C0   ■ 1,65 x 10  (for one wing surface). Overall equivalent total 

drag level was 10 percent greater than that of the basic model. The Incteased 
equivalent total drag results from additional suction requirements necessary to 
stabilise the boundary layer in the region of the Increased flow deceleration 
that are not compensated for by the decreased requirements in the region of 
stronger flow acceleration. In addition, the reduced static pressure level on 
the surface of the model reduces the suction chamber pressures, which increases 
the equivalent suction drag coefficient. 

At an anele of attack or • 0.26 degree the maximum Reynolds 

number attained was 24 x 10 , and at an angle of attack or » 0.4 degree the 

maximum Reynolds number was Rc • 13 x 10 . The local pressure rises in the 

region of the nose at cr ■ 0.26 and 0.4 degree were 0.185 q and 0.295 q , 
respectively. * « 
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(K) Discussion (Continued) 

(3) Ilodel with Fairing Kumber 2 

Fairing N'vmber 2 was designed to induce a flat or adverse 
pressure gradient over as long a portion of the model chord as possible. Com- 
pared with the pressure gradients induced by Fairing Number 1 (see Figure 35 ), 
the adversa pressure gradient over t\e aft 50 percent of the model was similar. 
However, in the region from 20 to 50 percent chord the pressure was constant 
or slightly increasing, whereas with Fairing Number 1 the pressure in this area 
was decreasing. From Figures A7 and 48 it is apparent that the effect of the 
increased region of constant or increasing pressure was to limit the maximum 
attainable Reynolds number slightly and to Increase the total drag coefficient 
by approximately five percent. At an angle of attack or c 0 degree the maximum 

attainable Reynolds number was ^  « 23,5 x 10ö. Minimum equivalent total drag 
coefficient Cj)^  « 4,7 x 10"^ occurred at a Reynolds number of approximately 

Rc » 21 x 106, 

At an angle of attack a  « 0.26 degree the shape of the 
On    vs Rc curve is similar to that of the other angles of attack and thus 

Tnln 

the effect of the nose pressure peak is not as apparent as in the other cases. 
At an angle of attack a » 0,4 degree minimum drag occurred at a Reynolds number 

llc  = 13 x 10 , The pressure rise downstream of the minimum pressure peak close 

to the leading edge was 0,23 q^ for on  «= 0,26 degree and 0,3 q for ct  » 0,4 
degree, * 
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CHAPTER C.    IKVESTICATIOWS Qg A 30^ StffiPT AND A 17-F(X)T C3K)RD STRAIGHT SUCTION 
\am w rm msENCE OF INTERNAL SOUND, EXTERNAL SOUND, AND 

MECHANICAL VIBRATIONS 

J. W, Bacon, Jr. 
W. Pfennlnger 
C. R, Moore 

(A) 

A 4-p«rc«ii£-thick «tnlght laalnar suction ving of 17-foot chord 
and • 3f9* nwpt, 12*|Mre«Bt-thick Iminsr Motion wing of «even-foot chord were 
invettiftted in tiie Nomir 7- hf 10-foot low tairbulenee wind tunnel et or « 0° 
angle of Attack in the pretence etf external sound (longitudinal and transverse 
sound neves). The 4 percent-thick straight wing «es tested, in addition, with 
internal sound and panel vibration. The external and internal sound consisted 
of discrete frequencies and octave bands of randon noise in the ISO to 4000 cps 
frequency range, while the vibration frequencies were 100, 190, and 1240 cps. 
The critical sound pressure or panel vibration at trensition could be increased 
considerably by increasing the suction quantities either es a whole over the 
entire wing chord or in the area critical to the applied disturbance. Froa the 
standpoint of total suction quantity and drag, it was ouch anre economical to 
increase Saiction locally in tNe region where transition occurred. 

The straight wing ehowed a frequency dependence of transition with 
external sound that correlates with the stability theory for eoplified Tollieien- 
Schliehting oscillations. 

On the swept Uueinar suction wing under the influence of external 
eound, however, transition occurred over a wide range of frequencies. In the 
pretence of open surface cavities, such as nonsucking open slots, static pres- 
sure orifices, or laperfectly sealed slots, the criticel sound pressure et 
trensition was reduced considerably, particularly at higher sound frequencies. 

For the swept wing in smooth condition the critical sound particle 
velocity ratio at transition generally decreased at a somewhat slower rate than 
Inversely proportional 5o the wing chord Reynolds number. In the pxeeence of open 
surface cavities, however, or with marginal suction the critical sound particle 
velocity ratio for trensition often decreased et e much faster rate with increee- 
ing Reynolds number. 

Naphthalene sublimetion pictures of transition with external sound 
on the straight wing had two-inch wider streaks, the typical pattern for break- 
down of laminar flow on a flat plate (Reference 33). For the swept wing, naph- 
thalene sublimation pictures with externalntmnd showed that transition generally 
occurred in the region of the flat pressure distribution and was usually preceded 
by the formation of closely spaced chordwise striations, indicating the presence 
of chordwise disturbence vortices in the presence of externel sound. The forae- 
tion of these vortices can probably be explained by the feet that the external 
disturbances superimposed on the crossflow boundary layer in the presence of 
external sound are of such a large msgnitude (as compared with the msan crossflow 
velocity) thet the stability limit Reynolds number of the boundary layer cross- 
flow in the area of the flat pressure distribution is reduced to considerably 
lower values, as compared with the case of infinitely mall externel disturbances. 
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(A) Suawaxv (contlmied) 

Hot wire «eaeureaentf on Che «wept wing verified aaplified boundary layer oscil- 
lations in the region of the flat pressure distribution which appear sufficiently 
strong to reduce appreciably the crossflow stability liait Reynolds ntmber in the 
presence of strong external sound fields. 

When the chordwise flow in the boundary layer in the front part 
of the wing was not too stable, the swept wing exhibited a similar strode pattern 
at transition in the flat pressure distribution area as the st night 4-percent- 
thick wing in the presence of external sound. Even when the two-dinensional 
breakdown pattern appeared on the swept wing, the closely spaced striations were 
also evident in the transition region. 

(B) Notfttion 

c wing chord 

CD8 equivalent suction drag coefficient 

C^        wake drag coefficient 

Cj)^ equivalent wing profile drag coefficient 

Cp ■ <p-Pa,>/<»«> 

CQ suction quantity coefficient 

f sound frequency (cycle? per second, cps) 

H       ■ 5*/e 

p static pressure on external wing surface with 
respect to the aabient static pressure p^ 

pa static pressure in suction chamber with respect to p^ 

P 2 
q« «2 U«, undisturbed dynamic pressure 

Qg suction quantity 

Re ^/v, wing chord Reynolds number 

2 
SPL sound pressure level (decibel), 0 db s 0.0002 dyne/cr» 

s* internal sound disturbance velocity 

u', v', w* external sound disturbance velocities in x-, y-, and 
z-directions, respectively (v* also is peak velocity 
of vibration skin panel) 
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(B) Noftlon (continued) 

U local potential flow velocity 

Um undisturbed velocity at infinity 

v0 auction velocity for equivalent area suction 

v0* « ^2 /Re 

x coordinate in undisturbed flow direction 

y coordinate normal to the wing suiface 

z coordinate in tpanwise direction normal to the 
direction of the undisturbed flow 

a angle of attack 

ör « 2nf, angular frequency of sound or disturbance 

6* boundary layer displacement thickness 

9 boundary layer momentu» thickness 

(C) Introduction and Formulation of the Problem 

Boundary layer transition under the influence of extarnal sound 
was reported in References 48, 83 and 84. In the presence of sound from a loud- 
speaker Schubauer and Skrairscad (Reference 48) observed amplified oscillations 
in the laminar boundary layer rf a flat plate at Rg* » 1200 to 2800, leading to 
premature transition with the proper combination of sound intensity and frequency. 
In general, the maximum amplification of the boundary layer oscillations on the 
flat plate in the presence of external sound occurred in the vicinity of the 
upper branch of the neutral stability curve. On a glider wing with boundary 
layer suction through a peforated surface Carmichael and Raspet (Reference 83) 
observed amplified boundary layer oscillations and premature transition in flight 
at Rc » 1.3 to 3 x 10" under the influence cf external sound from a loudspeaker 
when its frequency coincided with that of the amplified boundary layer oscillations. 
Similar resuU* have been published by the NLL (Reference 84 ) at wing chord Reyn- 
olds numbers Rc =• 10^. During low drag suction experiments on a 13-percent-thick 
slotted low drag suction wing in the NACA TDT tunnel, the second author observed 

f. 
a considerable Increase in wake drag at Rc ■ 16.3 x 10 with optimum suction for 
minimum drag when a blowdown tunnel was started in the vicinity of the TDT tunnel 
(Reference H).    h*  lower wing chord Reynolds numbers (Rc ^ 13 x 10^) the sound 
from the blowdown tunnel no longer affected transition on the model.  It appeared 
that the noise from this blowdown tunnel caused transition on the rear part of 
the wing, resulting in a correspondingly higher wake drag, when the suction model 
was tested close to the maximum wing chord Reynolds number with full chord laminar 
flow. 
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(C) Introduction and Formulation of the Problea (continued) 

Afterburner operation during flight experiaentt on an F-94 wing 
glove with suction through «any fine slots generally caused premature transition 

beyond Rc » 30 x 10® wing chord Reynolds number (Reference öS).    Noise fro« the 

propulsion systeo and possibly froo the turbulent boundary layer of the fuselage 
nay have been partially responsible for the fact that iaainar flow could not be 
maintained on the F-94 glove in the nonsuction region froea the leading «dgc to 
the 40 percent chord station at lift coefficients beyond CL *• 0.37 (Reference ö3;. 

From transition experiments on three-dimensional bodies, flat plates ard wings 
in the Ames 12-foot low turbulence pressure tunnel. NASA Ames cone ludJG that 
acoustical disturbances were primarily responsible for transition in this tunnel 
(Reference 71K Similarly, the maximum wing chord Reynolds number with full chord 
laminar flow on a 30° swept low drag suction wing in the Ames 12-foot pressure 
tunnel was partially limited by acoustical disturbances in this tunnel (Refer- 
ence 9J. During transition experiments in the inlet length of laminar flow 
tubes, the second author observed premature transition when standing waves in 
the tube were Induced by the exhaust noise of Diesel truck engines (Reference 86). 

Boundary layer oscillations on the wetted surfaces of a low drag 
suction airplane under the influence of external sound, generated by the airplane 
itself, can be sufficiently amplified to cdvse transition at high Reynolds num- 
bers. The noise from a low drag suction airplane can originate from the jet 
exhaust and the rotating components of its propulsion system, including the drive 
system, as well as from the turbulent boundary layer of the nonlaminarized areas. 
The noise spectrum of the rotating components of the propulsion system, such as 
the main engine compressor and turbine, the ducted fan and suction compressor, 
largely consists of peaks of discrete frequencies. In contrast, the jet exhaust 
and turbulent boundary layer noise has a continuous spectrum ("white" noise). 
The question then arises concerning the permissible sound pressure level «rich 
laminar flow and the mechanism of transition on laminar suction surfaces in the 
presence of external sound with discrete frequencies and with a continuous spec- 
trum. In view of the advantages of swept wings at high subsonic speeds, a 
designer of a high subsonic speed low drag suction airplane will be particularly 
interested in the behavior of swept laminar suction wings under the Influence of 
external sound and ii. methods which enable full chord laminar flow on swept suc- 
tion wings at further increased sound pressure levels. At the same time, the 
investigation of a straight wing in the presence of external sound fields is 
required for a clear understanding of the swept wing results. 

The question then arises in what manner disturbances from external 
sound influences the boundary layer on straight and swept laminar suction wings. 
On straight wings the chordwise component and on swept wings both the chordwise 
component and the crossflow component of the boundary layer flow can become 
unstable under the influence of external disturbances. As a result, disturbance 
vortices in the laminar boundary layers of low drag suction wings can develop in 
chordwise direction for both straight and swept wings and in the crossflow direc- 
tion normal to the potential flow streamlines for swept wings. These disturbance 
vortices are then orienttd essentially along the wing span and wing chord, respec- 
tively. According to experimental observations (Reference ö7), the crossflow 
disturbance vortices are stationary with respect to the swept wing in the region 
of the flat pressure distribution.  In the region of the rear pressure rise, how- 
ever, they travel in the direction of the boundary layer crossflow with a finite 
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CO latroductioc and PofuUtion of tht Probl— (continued) 

Mftv« velocity (teforonc« 69). At high wing chord Reynolds mwber« the behavior 
of the laaiaer boundery Uyer on e swept low dreg suction wing is generally 
critically influenced by ths dynsaic Instability of the boundary layer crossflow, 
particularly in the region of ths rear pressure rise where the boundary layer 
crossflow is aost pronounced. The chordwlse coaponent of the boundary lay^r In 
the rear part of the swept wing Is usually highly stable as A result jf the 
locally increased suction quantities which are required to avoid transition due 
to the instability of the boundary layer crossflow In this area. In contrast, 
considerably ssstller suction quantities are usually s^equate to aalntain laminar 
fjtw in the region of the flet pressure distribution both on the unswept and the 
sw,..  laminar suction wings. The boundary layer Is, then, not stabilized very 
auch by aeans of suction both on the straight wing and in the flat pressure dis- 
tribution area of the swept wing. Under the Influence of external disturbances 
amplified boundary layer oscillations in chordwlse direction nay then lead to 
transition on the straight wing and, in certain cases, on the swept wing when the 
chordwlse boundary layer In the region of the flat pressure distribution is not 
too stable. In addition, the swept wing can develop stationary chordwlse distur- 
bance vortices in the region of the leading edge and the flat pressure distribu- 
tion under the influence of strong external disturbances when the crossflow 
stability limit Reynolds number is exceeded. 

With external sound as the source of the external disturbance, 
boundary layer crossflow disturbance vortices on the swept wing might be induced 
and amplified by transverse sound waves traveling in the direction normal to the 
potential flow stresmline. In the region of the rear pressure rise the most 
critical frequency of the transverse sound waves would be evaluated from the 
particular combination of wave velocity and wave length which amplifies the cross- 
flow disturbance vortices in the boundary layer most. In the region of the fl.v: 
pressure distribution the swept wing crossflow disturbance vortices are stationary, 
i.e., the corresponding wave velocity snd time frequency are then zero. For this 
reason, based OR the ordinary stability theory of the boundary layer crossflow 
for infinitely small disturbances, no smplification of crossflow disturbances 
would be expected in the area of the flat pressure distribution under the influ- 
ence of external sound. 

Tollmlen-Schllchting type disturbance waves in the boundary layer, 
traveling In chordwlse direction, can be excited by longitudinal sound waves 
traveling In this direction. Throughout the straight wing and in the region of 
the flat pressure distribution of a swept laminar suction wing, where the chord- 
wise boundary layer is only moderately stable, longitudinal sound waves may cause 
amplified boundary layer oscillations in chordwlse direction when the sound fre- 
quency coincides with the frequency of the most strongly amplified chordwlse 
boundary layer oscillations. 

At low wing chord Reynolds numbers, when the boundary layer cross- 
flow in the area of the flat pressure distribution can be stabilized with very 
small suction rates, the frictional instability of the chordwlse component of 
the boundary layer flow on the swept wing may lead to premature transition in 
the presence of strong longitudinal sound. In contrast, on the rear part of a 
swept laminar suction wing with full chord laminar flow, the chordwlse boundary 
layer flow generally appears sufficiently stable to avoid strongly amplified 
boundary layer oscillations in chordwlse direction. 
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(C) Introductton and Foraulation of the Problea (continued) 

The question, of course, arises as to whether or not boundary layer 
stability theory, assuaing infinitely snail disturbances, will be adequate in 
predicting the behavior of the boundary layer on laninar suction wings in the 
presence of strong external sound fields. The sound particle velocity will 
generally be snail as coopared with the tangential velocity conponent of the 
boundary layer of straight and swept wings; it will be of a siailar order of nag- 
nitude, however, as the swept wing crossflow component of the boundary layer, 
particularly in the region of the flat pressure distribution. For this reason, 
it appears that nonlinear theory of the stability of the boundary layer crossflow 
on a swept laminar suction wing will eventually have to be used to understand the 
behavior of a swept laminar suction wing in the presence of strong external sound 
fields. 

(D) Experimental Setup 

In order to answer the questions raised in Part (C), a straight 
wing model and a 30° swept wing model mounted vertically in the wind tunnel  test 
section were investigated in the Norair 7-  by 10-foot low turbulence wind tunnel 
at or » 0° angle of attack in the presence of external white noise and noise of 
discrete frequencies.    The straight wing was also subjected to internal sound in 
one  suction chamber and to mechanically excited wing surface panel vibrations. 
The 4-percent-thick straight  symmetrical  laminar suction wli^j of  17-foot chord* 
and installation details are shown on Figures   ^ , *>3     and   ^ ^    Its airfoil 
ordinates and the locations of the 100 fine  suction slots and 16 suction cham- 
bers are shown in Tables     V       and   VI      .    The seven-foot chord,  30° swept 
symmetrical  laminar suction model of  12-percent-thickness** and the  installation 
are  sho*m on Figures     6"" ,   m     and   69 .    The streamwise ordinates for the modi- 
fied NACA 66-012 symmetrical  section appear in Table       I    .     In order to excite 
boundary layer disturbance vortices both in chordwise and crossflow direction, 
longitudinal  sound waves of discrete frequencies and with a continuous spectrum, 
traveling essentially in undisturbed flow direction, were generated by means of 
an air-modulated transducer located upstream of the nozzle and damping screens 
of the wind tunnel  (Figure  69 ).     In addition, during the investigation of the 
swept wing,  transverse sound waves traveling essentially along the wing span 
normal to the funnel axis were generated by a second air-nodulated transducer 
located on top of  the wind tunnel test section (Figure   69 ).    The design of  the 
acoustical part of the experimental setup was conducted by K,  Eldred and 
J. Christoff of Western Electro-Acoustic Laboratories (WEAL). 

The electropneumatic transducer,  Ling Electronics Model Altec 
6786,  is based on the principle of producing sound by interrupting a conpressed 
air jet with an annular valve.    A speaker coil  that is integral with the annular 
valve in a permanent magnet field gives a low distortion output up to 500 acous- 
tical watts of power in the 200 to 1200 ops frequency range.    In order to provide 
the  longitudinal  sound field,  the  transducer was coupled  to an exponential horn 
and mounted in a fiberglass aerodynamic  fairing with a parachute cloth-covered 

♦Previously tested  in the Norair 7-  by  10-foot wind tunnel  (Reference  14). 
♦♦Previously tested  in the 5-  by 7-foot Michigan and  7-  by  10-foot Norair 

tunnels and  the  12-foot,   low-pressure Ames  tunnel   (References 8,   9,   69 and   70) 
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(0) EffiaiHsfltfA Situo  (cootimicd) 

tail COM over the horn openin«. The faired transducer aeeeably was attached 
on centerline of the tunnel to the turnip vanes upstreaa of the wind tunnel 
test section. For the production of the transverse sound field, the transducer 
and horn assembly was located above the wind tunnel test section with a transi- 
tion duct tot bring the sound through opening* in the wind tunnel ceiling along 
the swept wing upper surface. 

During the first phase of the swept wing experiaents, the trans- 
verse sound was produced by ten peraanent segnet speakers, Jaaes B. Lansing 
Model D-Ul, 30-watt. The ten speakers were aounted in a sound-treated box 
and connected to the test section ceilii« fairings by a transition duct. Six 
of the saae speakers were used in another sound-treated box with connecting 
duct to supply a sound field inside suction chaaber nuaber 9 of the straight 
wing. 

A Barber Colaan peraanent aagnet, d.c. aotor-driven, reciprocating 
aats shaker developed by the Norair Flight Test group was used as an exciter for 
the paftel Vibration experiasnts on the straight wing. Because of the Mall size 
of this shaker unit, it was possible to aount it in a wing spir cutout between 
chaaber nuabers 8 and 9 (Figure 61). The attachaents to the closing ribs and 
the bottoa skin of the straight wing aodel for this spar ard the one iaaediately 
aft were reaoved to facilitate the panel vibration. Wich ehe exception of the 
Installation of the sound and vibration generating equipaent, the experiaental 
setup for the straight wing and the swept wing were the saae as described in 
References 9 and 14. 

In order to ainiaize reflected sound waves in the test section in 
the region of the aodel, the walls of the test section and part of the wind tun- 
nel nozzle, as well as the wind tunnel turning vanes downstreaa of the test 
section, were acoustically lined. The acoustical lining in the test section 
(Figure 69) consisted of a fiberglass insulation of 2- to 3-inch thickness 
aounted between the tunnel wall and a fiberglass cloth and an outer perforated 
metal sheet (one-eighth-inch diaaeter holes, 50 percent open area). 

Two-diaensional flow in the test are« of the swept wing aodel was 
maintained by shaping the walls of the test section according to the undisturbed 
streamlines around an infinitely long yawing wing of the saae cross section 
working in infinite flow at or « 0° angle of attack. 

The straight wing and swept wing chordwise pressure distributions 
Cp versus K/C are shown in Figures 70 and 71 . 

(E) Measureaents and Evaluation 

(I) Investigation of the Sound Field in the Wind Tunnel 
Test Section 

The sound field in the wind tunnel test section was determined 
under various conditions by traversing one of the WEAL condenser microphones on a 
rail-mounted carriage which traveled longitudinally along the tunnel froa behind 
the wing trailing edge to a point in front of the leading edge of the ssodel. 
This microphone was flush-mounted on a laminar flow body of revolution of two 
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(1) InvestiMtton of the Sound Field In the Wind Tunnel 
lest Section (continued) 

Inches diaaeter and twenty Inches length. Lanlnar flow on the »icrophone body 
was verified by stethoscope and hot wire observations. The alcrophone was 
located 7.5 inches downstreaa of the nose of the alcrophone body. The sound 
pressure in the test section of the wind tunnel was recorded in the presence 
of longitudinal and transverse sound of discrete frequencies and with various 
bands of white sound at several distances fron the aodel and tunnal floor and 
at different tunnel speeds (including zero). The slcrophone output was Measured 
by a General Radio Company or a  BrOel and KJaer level recorder and was recorded 
on an oscilloscope and on aagnetic tape. 

The first sound measurements during the swept wing investi- 
gation were conducted with the acoustical lining in the test section extending 
upstream to the beginning of the wind tunnel nozzle. In this condition strong 
fluctuations of the sound pressure in spanwise and chordwise direction were 
observed on the front part of the wing, indicating the presence of strong stand- 
ing sound waves between the tunnel walls. In order to Binlnize these standing 
waves, the acoustical liniig was extended further upstrean into the wind tunnel 
nozzle as far as practical (Figures 66 and 69). 

The reference sound pressure was measured by means of a 
second WEAL condenser microphone, which was flush-mounted on a laminar flow body 
of revolution. For the straight wing test the reference microphone was located 
opposite 69 percent chord, 23 Inches above the tunnel floor and seven Inches from 
the wing surface. The reference microphone for the swept wing was located opposite 
the 15.6 percent chord station, with reference to the wing section at the center- 
line of the measuring region, at a distance of 7-1/8 Inches from the wing surface 
and 25 inches above the floor of the wind tunnel test section. Ideally, the 
sound pressure should be measured as closely as possible to the model to minimize 
errors due to standing waves between the model and the side walls of the tunnel. 
However, in such a close vicinity to the model, the microphone body would Induce 
a disturbance flow field of sufficient magnitude to cause non-uniform local suc- 
tion and premature transition. 

Both the reference microphone and the movable microphone were 
calibrated in the anechoic chamber of WEAL and were frequently checked during the 
experiments with the aid of a calibration coupler. The microphone signal was 
read through a WEAL microphone amplifier complement and voltmeter. 

The flush-mounted microphone recorded, in addition to the 
external sound, pressure fluctuations in the laminar boundary la'"r on the micro- 
phone body caused by boundary layer oscillations. In order to obtain an idea 
about the corresponding possible error in the sound pressure measurement, the 
velocity fluctuations in the laminar boundary layer of the microphone body were 
recorded for several cases by means of hot wires. The velocity fluctuations 
observed at the reference microphone location were considerably larger than 
those due to the external sound alone. For this reason the somewhat higher 
sound pressure recorded by the reference microphone is generally attributed to 
the presence of boundary layer oscillations on the microphone body. For the 
evaluation of the sound experiments the error in the measurement of the reference 
sound pressure caused by laminar boundary layer oscillations on the reference 
microphone body was neglected. 
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(i)    lnve«tlMtlon ef th* Sound Plaid in the Wind IW.^l 
A'eit S«ction (continuad) 

In order to investigate to vhich degree tvo-diaentional found 
fields were obtained in the test section with the individual sound sources, the 
coaponents in x-t y- and z-directions, u*, V and w't of the sound particle 
velocity in the vind tunnel test section were Measured by aeans of hot wires 
under different conditions at both the edge of the boundary layer on the swept 
wing and one inch off the reference «icrophone body.    V-wires were used for the 
■easureaant of v* and w*.    At the saae tirns a coaparison could be Hade with the 
sound pressure as recorded with the reference «icrophone by adding vectorially 
the three coaponents u', v* and w* of the sound particle velocity» assuaing that 
they were in phase and that the sound waves were plane.    Longitudinal as well as 
transverse sound waves of discrete frequencies and various bands of white noise 
were investigated. 

For the evaluation of the ratio of the signal of the external 
sound to the noise of the disturbances froe tunnel turbulence and tunnel noise, 
the latter were aeasured at different tunnel speeds by aeans of a hot wire and 
aicrophone.    Figure    72 shows a plot of the tunnel turbulence u'/U« versus undis- 
turbed velocity Vm of the Noxair 7- by 10-foot low turbulence tunnel.*   u'  is the 
ras turbulent velocity fluctuations in the wind tunnel test section.    The saae 
figure presents a plot of the sound pressure of the tunnel (expressed in decibels 
and as a ratio of sound particle velocity to tunnel velocity, assuaing plane sound 
waves) for various tunnel speeds. 

• 
(2) Standard Measureaents on Low Dtaa Suction Wi 

Their Evaluation 

The following standard aeasureaents were taken at various wing 
chord Reynolds nuabers with external and internal sound of discrete frequencies 
and different bands of white noise and with panel vibration: 

(a) Static pressure distribution on the external wing 
surface by aeans of 0.020-Inch diaaeter static 
pressure orifices; 

(b) Static pressures in the Individual suction chambers 
by aeans of static pressure orifices; 

(c) Suction flow quantities in the individual suction 
chaaoers as evaluated froa the pressure drop across 
calibrated flow measuring nozzles connected to the 
individual suction chambers; 

(d) Boundary layer profile at the wing trailing edge by 
means of a boundary layer total pressure rake and a 
local static pressure tube; 

(e) Boundary layer profiles at various chordwise stations 
by means of hot wires. 

*A more detailed description of the Noralr 7- by 10-foot low-turbulence wind 
tunnel is given in Reference 14. 
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(2)    Standard Measurement» on Low Drag Suction Wings and 
Their Evaluation (continued) 

The wake drag coefficient C^ was det*rained according to 

Squire and Young fron the measured boundary layer aooentun thickness at the wing 
trailing edge.    The coefficient Co8 of  the equivalent suction drag to accelerate 
the auction air isentropically to freestrean velocity was evaluated fron the 
static pressures and the suction quantities in the various individual suction 
chaabers.    The coefficient CQ^ of the equivalent wing profile drag is,  then,  the 

sun of C^ «nd CD8
: 

CD„ " CD„ * CDa • ws 

H*2 

«here CD    " "7" * c eTE("ir) 
29 « V*.*. Make " 2 TE 

Index TE refers to the trailing edge station and a, to the location at infinity. 

•We 
"turbrE * H» 

With Hturb      » 1.4 and H,,, « 1: 
^TE 

2  ,       "TE,3'2 

%B c 9TE<ir) 

all     öl        all 
chambers chambers 

with CQj  = —r
4-, Cn  « 1 - 

Ql  U^bc'  Pg. q 
^1  „     .   Pai • P 

81 

a> 

CD 

i refers to each Individual suction chamber. 

In order to obtain a better understanding of the mechanism 
of transition on a swept low drag suction wing under the influence of external 
sound, the state of the boundary layer and location of transition were observed 
under different condilions by means of microphones, connected to the wall static 
pressure orifices, and by spraying the test surfaces with naphthalene. The latter 
sublimates at a much faster rate in the presence of a turbulent boundary layer 
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<2)    Standard Meattureawnt« on Low Drm Suction Wings and 
Th«tr Evaiuftloa (continued) 

with it» high surface shear stress as compared to a laalnar boundary layer.    As 
a result, the laminar areas appear white In contrast to the clear areas where 
the boundary layer Is turbulent. 

During the first phase of the experiments the critical sound 
pressure  level at which transition occurred was deternlned for various conditions. 
For example, at a given wing chord Reynolds number and chordwlse suction distri- 
bution the sound pressure level, for a certain sound frequency, was slowly 
increased until transition was observed.    In other cases, when transition 
occurred under the influence of external sound, internal sound or panel vibra- 
tion, suction was increased as a whole or locally upstream of the transition 
region until full chord  laminar flow was re-established.    Furthermore, under 
otherwise the same conditions,  the frequency of the disturbance was varied. 
The influence of surface disturbances such as open static pressure orifices, 
etc.,  in the presence of sound was investigated. 

(3)    Measurements of the Velocity Fluctuations In the Laminar 
Boundary Layer in the Suction Area in the Presence of 
External Sound 

In order to Investigate whether or not transition under the 
Influence of external sound was caused by anplified boundary layer oscillations, 
the velocity fluctuations u* and w*  in the laminar boundary layer of the test 
area of the swept wing were measured at Re ^ 8.1 x 10^ at several chordwlse 
stations (x/c » 0.37, 0.44, 0.45, 0.58 and 0.90) with sound of various discrete 
frequencies and with white noise of different frequency bands by means of hot 
wires.    The sound pressure level and chordwlse suction distribution were varied. 
Since amplified oscillations in the boundary layer of a swept laminar suction 
wing can develop under the Influence of external sound both in tangential and 
crossflow directions,  the velocity fluctuations in the boundary layer were meas- 
ured in tangential as well as in crossflow direction by means of ordinary 
u*-wires and V-wlres,  respectively.    The hot wires used were platinum wires 
of 0.05-lnch length and 0.00015-Inch diameter for the straight wing and plati- 
num Iridium wires of O.i-inch length and 0.00028-inch diameter for the swept 
wing.    The velocity fluctuations u' and w'  in the boundary layer were evaluated 
from King's equation for the rate of heat loss from heated wires in an airflow 
(Reference 8B),    The wires were calibrated in a 4- by 4-inch low-turbulence 
tunnel, and the hot wire data were recorded with a modified four-channel Thele- 
Wrlght hot wire set.    Preceding quantitative hot wire readings, a series of 
oscilloscope pictures were taken at various chordwlse locations In the boundary 
layer of the test wing for different suction distributions and external sound 
fields on the swept wing. 

On both models,  strong velocity fluctuations were observed 
In the  laminar boundary layer of the test wing at low frequencies below 30 cps. 
These  low frequency fluctuations,  which have no apparent effect on the  laminar 
boundary layer, may have been caused by unsteady flow in the first wind tunnel 
diffuser and upstream of the wind tunnel fan.    During the hot wire measurements 
in the boundary  layer,   these  low frequency oscillations were filtered out.    High 

f frequencies (above 4800 or 10,000 cps)  that were predominantly amplifier noise 
* were also filtered. 
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(F) Results and Discussion 

(I) Sound Field in the Wind Tunnel Test Section 

The sound field in the wind tunnel test section was investi- 
gated with the swept wing installed. Figure 73 shows a typical plot of the 
sound pressure, as measured with a traveling WEAL condenser microphone» along 
the tunnel axis at the height of the centerline of the swept wing aodel at a 
distance of six inches from the oaximn thickness of the aodel. The plotted 
circles show the comparison values of the hot wire measuresients at one inch 
above the wing surface where the components of u', v* and w' were combined, 
assuming that all components are in phase. The double circle represents the 
reading on the reference microphone. Longitudinal and transverse sound of dis- 
crete frequencies and with a continuous spectrum of different frequency bands 
was applied. 

The mean sound pressure on the model, as measured with the 
traveling microphone at the centerline of the model, was generally slightly 
higher than the corresponding reading of the reference microphone, especially 
with longitudinal sound. At the higher tunnel speeds and wing chord Reynolds 
numbers the variation of the sound pressure along the tunnel axis was small with 
transverse sound of discrete frequencies and with a continuous spectrum. With 
longitudinal sound the sound pressure often decreased slowly in downstream direc- 
tion from the leading edge toward the trailing edge of the model, particularly at 
the lower frequencies, probably caused by the attenuation of sound waves, reflected 
from the tunnel walls and the model, in the acoustical lining of the test section. 

The periodic variations of the sound pressure observed with 
the traveling microphone were probably caused by standing sound waves between 
the walls of the test section and the model. At lower tunnel speeds and wing 
chord Reynolds numbers these periodic variations of the sound pressure became 
much more pronounced, and vice versa. 

Similar chordwise traverses of the sound field at various 
heights in the wind tunnel test section as well as at other distances from the 
model showed similar fluctuations of the sound pressure in the wind tunnel test 
section in vertical and horizontal directions. These fluctuations of the sound 
pressure also probably resulted from standing sound waves between the tunnel 
walls and the model. 

It thus appeared that the formation of standing sound waves 
in the test section caused considerable fluctuations of the sound pressure in 
the test region, especially at the lower sound frequencies. The question then 
arose as to which sound pressure reading should be used for the evaluation and 
analysis of the experimental data. Ideally, for the analysis of the data, the 
sound pressure soroewh&t upstream of the transition region close to the model 
would have been most meaningful. Transition, according to naphthalene sublima- 
tion observations, generally occurred in  the region of the flat pressure distri- 
bution of the swept wing in spanwise areas where the sound pressure was highest. 
For this reason an attempt was first made to correlate the data with the local 
sound pressure in the transition area with various external sound fields. Since 
the spanwise and chordwise positions of transition with these different sound 
fields varied considerably, an excessively large number of chordwise sound 
traverses would have been required to determine accurately the sound pressure 
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CD Sound Fiaid In tha Wind TUnmtl Taat Section (continued) 

In and upstrM» of the transltlcm «rca for these varied conditions. In view of 
these difficulties, this attcspt was finally abandoned, and the sound pressure 
at the reference slcrophone was used for the evaluation and analysis of the 
experlMentat data. 

The agreeaent between the sound pressure as neasured with the 
traveling Microphone and evaluated fro» hot wire aeasurements of the sound parti- 
cle velocity eooponen'f. u'» v' and w* was generally satisfactory with transverse 
sound (white noise anr umnd of discrete frequencies) and with longitudinal white 
sound. With longitudinal sound of discrete frequencies the agreeawnt was less 
satisfactory at 800 cps. 

(a) Critical Sound Pressure and Sound Particle Velocity 
Ratio (u'/U») J4. at Transition under Various Conditions 

crit 

With optioua suction for mlnioum drag external sour-i 
caused transition on the straight laainar suction wing at rather low sound pres- 

sures (108 db at Rc *! 20 x 10° and CQ ■ 1.1 x 10*^)« The critical sound pressure 

for transition could be raised to considerably higher values by increasing suction 
either as a whole by raising the level of suction or by increasing the suction 
locally in the areas where transition occurred. For exaaple, by increasing suc- 

tion frosi CQ - 1.1 x 10** to 1.8 x 10'* at Rc ■ 20 x 106 raised the critical sound 
pressure to over 130 db. A definite dependence of the transition on the fre- 
quency of the acoustic disturbance was apparent on the straight wing. Figures 
74 to 77 graphically Illustrate this dependence. These figures show the 
required suction distribution without external sound and the additional Incre- 
ments of suction required to re-establish laminar flow in the presence of 
strong external sound fields of various frequencies. For example, on these fig- 
ures, the 600/1200 octave band of randoui noise input needed additional suction 
in the forward part of the wing to maintain full chord laminar flow; the 300/600 
suction increment needed an Increase through the mldportion of the wing; while 
suction had to be Increased primarily in the rear part of the wing with white 
noise of 150/300 cps. Similarly, the discrete sound frequencies on Figure 76 
show the same pattern where the lower sound frequencies required additional suc- 
tion to the tear and the higher frequencies required additional suction forward 
for the maintenance of full chord laminar flow. From this data the conclusion 
is drawn that the forward, middle and aft portions of the wing are more sensitive 
to frequencies in the 600, 400 and 200 cycle range, respectively. It appears 
that transition occurred at particularly low critical sound pressures when the 
sound frequencies correlated with the frequencies for amplified chordwise bound- 
ary layer oscillations. 

In Figures 76 to 82 (u,/üa,)crit at transition is plotted 

versus sound frequency for a given Reynolds number to show the effect of suction 
level on transition with external sound. The crossed line represents the maximum 
sound pressure field available so that a point on the crossed line indicates that 
there was no transition up to the maximum available sound pressure lev. . To 
obtain these data, the suction distribution wss first set at the required level 
for no transition st the maximum sound field for each of the frequencies at the 
stated Reynolds number. Then, the suction level was reduced in steps to the 
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(a) Critical Sound Pressure and Sound Particle Velocity 

Ratio (u'/Uc^crit ** Transition under Various 

Conditions (continued) 

mininum value for full chord laminar flow. Tne great Improvement in value of 
(u,/Ua>)crit for transition at 800 cps with higher forward suction (run 129) com- 

pared to run 117 (Figure 73 ) again supports the earlier observation that sound 
of 800 cps would be critical forward. Again, in Figure 81 a cuctlon increase in 
the front part ol the wing raised the critical sound particle velocity ratio 
(u,/ü«)cr;it for transition progressively with increasing sound frequency. 

^igures 63 and 84 illustrate Che increase in total 
suction quantity and equivalent wing profile drag for the 17-foot chord, 4-percent- 
thick wing with full chord laminar flow in the presence of external sound of 
increasing sound pressure and sound particle velocity. These two figures show 
that the increase in suction and the corresponding equivalent wing profile drag 
required to maintain full chord laminar flow on a thin straight laminar suction 
wing were not unreasonable in the presence of strong external sound fields. 

The increase of the equivalent wing profile drag CQ^ 

at increasing sound pressure level with the suction quantity held constant was 
also investigated. Figures 83 to 88 show the variation of Cß^ versus u'/U« 

for several external sound frequencies. In general, the equivalent wing profile 
drag approximately doubled for a value of u'/U« equal to twice the value at 

Initial drag rise. The initial drag rise for a given frequency was strongly 
Influenced by the suction distribution and level. For example, on Figure 87 
the substandard amount of suction on chamber number 9 (45 to 32 percent chord) 
led to early transition for 442 and 300/600 cps, some transition for 150/300 cps, 
but no transition at 660, 810 or 600/1200 cps. Her« again, a frequency depen- 
dence of amplified oscillations corresponding to stability theory is evident in 
that the 300/500 cps disturbances were amplified in this region of the wing 
while disturbances of higher and lower frequencies were amplified less or not at 
all. This example emphasizes the need of providing adequate suction along the 
entire wing chord when external disturbances fron sound and other sources cover 
a wide range of frequenc es. 

A set of runs where only the forward static pressure 
orifices were sealed at the surface, with the rear static pressure orifices 
still open at the wing surface* (Figure 88 ), brings out another interesting 
point. In this instance the two suction distributions tested corresponded to 
the same total suction quantity, C , but the distribution of suction for runs 
65 to 69 was lower from 20 to 40 percent chord and higher from 40 to 80 percent 
chord than runs 60 to 64. These data show that the drag rise due to premature 
transition in the presence of sound was delayed to higher sound pressure levels 
when suction was relatively higher in the region of the open wing surface static 
pressure orifices. Suction was, then, beneficial to the maintenance of laminar 
flow in the presence of the disturbance caused by the interaction between a 
strong external field and open static pressure orifices. 

♦Airtight otherwise. 
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(«) Critical Sound Fresfure and Sound Particle Velocity 
Ratio t^'/^crtt *' Transition under Various 

Condi Lions (continued) 

A correlation for the straight wing of (u,/u«>Jcrit 

versus CQ for all octave band noise data under the influence of external sound 

is presented in Figure 89. The slope of the straight lines ( ii^z —) is 

equal to approxlMtely 48 for all three octave bands. The white nois« data were 
chosen for the correlation because the corresponding sound field was »ore unifom 
over the aodel than with sound of discrete frequencies. 

(3) Variation of the Critical Sound Pressure for Transition 
SB ff ^r^ »fffiinar Suction Wing under Various Conditions 

(a) Influence of Sound Frequency on Transition 

Figures 9U and 91 show the variation with sound fre- 
quency of the critical sound pressure and the corresponding values for the critical 
sound particle velocity ratio (U'/U*)crit (assuaing plane sound waves) for the 

start of transition in the presence of longitudinal and transverse sound of 
various discrete frequencies and bands of white noise at several wing chord 
Reynolds nusbers. "Minlnu»M suction, closely corresponding to the optlnun suc- 
tion distribution for miniaun drag in the absence of external sound, »as applied 
In most cases shown in Figures 90 and 91 (CQ • 3.3 x 10*4 to 3.70 x 10"4). 

Slightly increased suction rates (CQ ** 3.70 x 10  to 3.9 x 10'4) correspond to 

low suction, and still stronger suction (CQ a. 4.2 x 10"4) is designated as nedlum 
suction. The first fifteen surface static pressure orifice« up to the beginning 
of the rear pressure rice were sealed when the experiments with the transverse 
sound generated by loudspeakers started. The retaaining static pressure orifices 
in the region of the rear pressure rise were sealed during run 46 and were kept 
sea lee for the reaainlng part of the invectlgstion. During part of the runs, 
suction was applied through all slots fro« 0.5 to 97 percent chord. Since no 
suction was really required in the front part of the swept suction wing at the 
test wing chord Reynolds nuabers up to Rc a- U x 10^, no suction was applied 
during part of the runs in »one of the front slots. These slots were than either 
sealed with clay or purposely left open (see notes on Figures 90 and 91 ). Test 
runt 47«, 48a and 49 were conducted in the presence of sasll pinholes in an laper- 
fectly sealed front slot. 

At higher sound frequencies the saxlaus sound power of 
the speakers and of the transducers wss Halted» ami the sound wave becaae 
increasingly distorted at these higher sound power levels at high frequencies. 
For this reason reliable data for the critical sound pressure level could not 
be «.»stabilthed on the smooth wing at sound frequencies beyond 1500 cps with sound 
of discrete frequenci-««, particularly with increased suction rates. On the saooth 
wing full chord laainar flow could generally be aalntained at these higher sound 
frequencies up to the a&xlaua available sound power level. 
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(«)  Influence of Sound Frequency on Transition (ccmtinu•.■.;; 

In the presence of longitudinal and transverse sound of 
discrete frequencies the critical sound pressure on the snooth wing at wing chord 

Reynolds nuabers of 8 x 106 to 11.5 x 106 decreased froa a value of 123 to 13ü db 
at low sound frequencies (below 1000 cps) to approxlaately 120 to 123 db at higher 
sound frequencies (1000 to 1300 cps). With white noise the critical sound pres- 

sure level decreased slightly at the higher frequency ranges. At Rc =? 10' the 

■iniaua critical sound pressure was usually observed in the 1200/2400 cps fre- 
quency band with longitudinal as well as transv :se sound. On the snooth wing 
with nininum suction, transition with white noise in the 1200/2400 cps frequency 
range started at a sound pressure of 120 to 123 db, with suction applied either 
through all slots or fron 13 to 96 percent chord and with the nonsucking front 
slots carefully sealed. The frequency range of 1200/2400 cps correlates with 
that for anplified chordwise boundary layer oscillations in the front part of 
the wing. Contrary to the straight wing results and to ordinary boundary layer 
stability theory, which would predict a frequency dependence of the critical 
sound pressure, the relatively small variation of the critical sound pressure and 
(u'/U^)^   with sound frequency on the smooth swept wing was somewhat unexpected. 00' 

Figures 92 and 93 show thcj only case where transition 
on the swept wing due to external sound could be correlated with the Tollmien- 
Schllchting stability theory of the tangential boundary layer flof in a similar 
manner as on a 17-fooi. chord straight laminar suction wing. Suction was applied 
over the rear half of the wing chord only, and the front half of the wing with 
the suction slots was covered with paper. Under such conditions the instability 
of the tangential component of the boundary layer becomes critical in the front 
nonsuction area of the wing at somewhat lower Reynolds numbers (Rg £ 7 x 10^). 

The instability of the boundary layer crossflow component becomes rapidly less 
critical at these low wing chord Reynolds numbers. Figure 92 illustrates, at 
a wing chord Reynolds number Rc = 7 x 10°, a strong reduction of the critical 
sound pressure at sound frequencies of 400 to 830 cps, corresponding to the fre- 
quency range for amplified Tollmien-Schlichting oscillations at 30 percent chord. 
At 600 cps transition was observed at quite low sound pressures (109 db). Figure 
93 presents the correlation of the observed critical sound fre uencles with the 
frequencies of amplified Tollmien-Schlichting oscillations of the tangential com- 
ponent of the boundary layer at the midchord station. 

Under marginal conditions, for example, with marginal 
suction rates, particularly in the front half of the wing, at higher wing chord 
Reynolds numbers, the critical sound pressure for transition dropped considerably. 
Figures 9u and 91 illustrate the variation of the critical sound pressure with 
sound frequency at Rc = 11.2 x 106* with marginal suction rates in the most 
critical part of the wing slightly below the minimum suction distribution in the 
absence of sound as well as with Increased suction rates closer to the optimum 
distribution. With marginal suction transition occurred at approximately 5 db 
lower sound pressure levels, as compared with the case of the more optimum suc- 
tion distribution. 

*The maxiraum wing chord Reynolds nur.ber with full chord laminar flow on 
the 30° swept laminar suction wing mounted in the smooth test section 

of the Noralr 7- by 10-foot tunnel wc>8 )3 x 106. 
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(b) Influence of Suction Quantity and Chordvise Suction 

Distribution on the Swept Wing 

In order to investigate the influence of suction in the 
region of the flat pressure distribution, vhent transition started, a series of 
runs (Figure 94 ) ware conducted varying the suction quantity in chaaber 8 
(x/c ■ 0.33 to 0.41} from zero to high suction in the presence of longitudinal 
and transverse sound of 800 cps. The critical values tu,/Ua>)crit for various 

suction quantities in chaaber 8 are shovn in Figure 94 , indicating a rapid 
increase of ^u'/U4»)crlc vith the suction quantity in chsaber 8. 

A corresponding sequence increasing suction as a whole 
over the entire wing chord Is shown in Figure 95. The wing chord Reynolds 

nuaber was Rc ■ 5.8 x 10 . Soae of the front slots were iaperfectly seated 

(pinholes). ^'/^a'crit increases with larger suction quantities at a relatively 

slow rate, and quite large suction quantities were required to aalntain full 
chord laalnar flow at higher sound pressure levels, as coapared with the case 
when suction was increased only locally in the region of the flat pressure dis- 
tribution where transition started. Figure 96 shows, as an exaaple, the varia- 

tion of the critical sound particle velocity ratio at Rc > 4.1 x 106 with 

increasing suction in the forward region of the flat pressure distribution, with 
the suction distribution in the region of the rear pressure rise held constant 
(static pressure orifices open). 

Another increasing overall suction level sequence at 

Rc ■ 8 x 10^ and the corresponding critical sound particle velocity ratios 
(u'/U^gg^g at transition for the saoothwing are shown in Figure 97. Even a 

45 percent increase in overall suction did not prevent transition at all fre- 
quencies below the aaxiaua available sound level. Insufficient suction was 
applied in the forward chaabers to avoid transition. The laportance of raising 
the suction rates in the region of the flat pressure distribution upstreaa of the 
60 percent chord station and the inefficiency of an overall suction increase pre- 
viously encountered (Figures 93 and 97) is confined in Figures 98 and 99 . 
Run 130 (Figure 98) represents the ainiaua saount of suction for full chord laal- 

nar flow without sound. At Rc ■ 9.8 x 106 this suction distribution is adequate 
quate to aalntain full chord laalnar flow at (u,/UaB)crlt > 10 x 10~

4. In order 

to Increase the critical sound particle velocity ratio to ^VU«)    ■ 25 x 10"^, 

suction in the front part of the wing had to be raised such that the total suc- 
tion quantity was increased by 15 percent, as coapared to acre than 41 percent 
when suction was raised as a whole over the entire wing chord. A coaparison of 
the top and lower suction distribution plots (Figure 98 ) shows even aore clearly 
that the critical sound pressure and the corresponding ratios (u,/Ueo)crlt depend 

essentially only on the suction rates ahead of the 60 percent chord station. For 
example, runs 128 and 131 showed approxiaately the ssae critical»und pressure 
level when their suction rates v0* ahead of 60 percent chord were practically the 

saae. In Figure 99 suction was first set for no transition without sound (run 
82) and then increased to a level required for transition with aaxinua sound (run 

86).  In order to aalntain full chord laainsr flow at Rc * 11.5 x IG
6 with the 

-136- 



(b) Influence of Suction Quantity and Chordwlse Suction 
Distribution on the Swept Wing (continued) 

■axiaua extern«! aound field (run 86), suction upstreaa of the 60 percent chord 
station had to be Increased by 49 percent. This increase represents but a saall 
percentage of the total suction quantity. 

SuMftrizingy on the swept wing the critical sound pres- 
sure and the corresponding sound particle velocity ratio <u,/Uc0)crit could 

generally be increased to the ■axiauai available level by increasing the suction 
quantities either as a whole over the entire wing chord or locally in the 
critical area of the flat pressure distribution, where transition otherwise 
occurred. Fro« the standpoint of total suction quantity and wing profile drag 
it was isuch acre econoalcal to increase suction locally in the critical region 
of the flat pressure distribution. As an exaaple, the critical sound pressure 
at transition could be Increased by approximately 8 to 10 db with a 15 percent 
larger suction quantity when suction was locally increased In the most critical 
area, with an Increase in wing profile drag of approximately 3 percent. 

At the higher wing chord Reynolds numbers Increased suc- 
tion had to be applied, particularly to  the forward part of the swept wing, to 
reduce the growth of boundary layer oscillations in the area of the flat piessure 
distribution and thus to delay transition to higher sound pressures. 

(c) Influence of Wing Chord Reynolds Number on 
the Swept Wing 

Figures 100 and 101 show, in log-log plots, the variation 
of the critical sound particle velocity ratio ^u</^cr4r 

at transition with wing 

chord Reynolds number under various conditions (smooth model without surface 
cavities with minimum and increased suction as well as with open static pressure 
orifice holes and nonsucklng open slots in the front part of the wing). For 
minimum suction the critical sound pressure level at transition generally 
Increased slightly with Increasing wing chord Reynolds number. The correspond- 
ing critical sound particle velocity ratio ^u'^^Kr4t  then decreased at a some- 

what slower rate than inversely proportional to the wing chord Reynolds number. 

The reduction of the critical sound pressure and 
(u,/U00)cr<t for transition with open surface cavities such as static pressure 

orifices, imperfectly sealed slots with pinholes, nonsucklng open slots, etc., 
#as generally observed over the whole test Reynolds number range up to Rc « 12 x 10° 
except at the lowest test Reynolds numbers, Rc s 4 x 10" (Figures 100 and 101), 

(4) Critical Sound Pressure for Transition with Open Surface 
Cavities on Both Straight and Swept Wings 

During the experiments premature transition under thi  influence 
of external sound was often observed downstream of open surface cavities such as 
static pressure orifices, nonsucklng slots or imperfectly sealed suction slots. 
Leakage of air from these cavities to the external surface was prevented, and full 
chord laminar flow was achieved without external sound.  In the presence of strong 
external sound, according to naphthalene sublimation studies, turbulent wedges 
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(4)    Critic*! Sound Pwure for Triultlon with Open Surface 
Cavltle» on Both Straight and Swept Wing« (continued) 

were observed downstreea of static pressure orifices and pinholes in an iaper* 
fectly sealed slot.    When the static pressure orifices and nonsuckiqg slots were 
properly sealed at the wing «irface such local turbulent wedges did not develop. 
The straight wing values of (u'/U«)    ... for transition are shown in Figure   82 

crit 
for the case where individual static pressure orifices were open at the surface 
but sealed at the aamMMter end of the pressure line. With the orifices sealed 
at the surface and the sa«e suction applied, no transition existed at the naxi- 
aua sound pressure. The -Au'/U. ordinate (Figure 82) represents the decrease 

in (u,/UM)crlt due to opening a static pressure orifice. Figure 82 shows that 

the 13 percent chord orifice location was least sensitive and the 46 percent 
chord orifice was aost sensitive to external sound. The suction coeparison 
at the right of Figure 82 shows that the local sue tion in excess of ■iniaua 
drsg requirements was greatest at IS percent chord and least at 46 percent chord. 
Apparently, suction was again not only beneficial to the aalntenance of laainar 
flow with open orifices under the influence of external sound,but also explains 
the differences in critical disturbance velocity (u'/U») it at various chordwise 

orifice locations. Another iaportant feature of Figure 82 is that transition 
occurred at all frequencies for each chordwise orifice location, while other 
transitions due to external sound have shown a frequency dependence that corre- 
lated with stability theory. Therefore, the two-diaensional soall disturbance 
theory did not apply to the straight wing transition in the case of the inter- 
action of the open static pressure orifice and the external sound field.* The 
transition aechaniSB for open orifices and external sound fields was probably 
not associated with aoplified Tollnien-Schlichtii^ waves but a three-diaensional 
flow phanoaena siailar to that described in the chapter on internal sound (Part 9). 

Figures 90 and 91  show the critical sound pressure on the 
•wept wing at transition and the corresponding critical sound particle velocity 
ratio in the presence of saall pinholes in an iaproperly sealed front suction 
slot with external sound of various discrete frequencies and bands of white noise 

(ainiaun suction). At Rc ■ 9.8 x 106 and sound frequencies between 1200 to 2400 
cps (with white noise and sound of discrete frequencies) the critical sound pres- 
sure with this iaperfectly sealed front slot was approxlaately 8 to 12 db lower 
than for the saooth aodel with properly sealed front slots or with suction 
applied through slots. Figures 90 and 91  illustrate the reduction of the 
critical sound pressure for various sound frequencies with soae of the forward 

nonsucklng slots open. At Rc « 9.8 x 10
6 and sound frequencies between 1200 to 

2000 cps, transition was observed at 5 to 10 db lower sound pressures wit' the 
nonsucklng slots open. The critical sound pressure level for transition with 
open surface cavities (pinholes in one of the imperfectly sealed front suction 
slots, nonsucklng open slots in the front part of the wing) was particularly low 
In a range of sound frequencies which correlated with the frequencies for aiapli- 
fied chordwise boundary layer oscillations in the front part of the wing in the 
region of the open surface cavity. The saooth wing showed a considerably saaller 
reduction in critical sound pressure at higher frequencies as coapared to the 

*At the saae tlae, the lack of a frequency dependence indicates t^at the surface 
cavities did not act as Helaholtz resonators. 
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(4) Critical Sound Frcsmre for Trantltlon with Open Surface 
Cavltlet on Both Straight and Swept Wlim« (continued) 

model with open surface cavities (Figures 9ü and 91 ). The only exaople when 
transition was observed at low sound pressures and at rather distinct frequencies 
(1900 to 4500 cps) was the case when the static pressure orifices in the region 
of the rear pressure rise were left open (Figure 91). The renaining static 
pressure orifices and nonsucking slots were sealed. In this case the rear static 
pressure orifices may have acted like Helnholtz resonators. Closing the static 
pressure orifices in the region of the rear pressure rise or sucking through 
these orifices by lowering the reservoir of the manooeter bank raised the criti- 
cal sound pressure at the higher sound frequencies (between 1300 and 3000 cps) 
to and beyond the maxinum available sound pressure. 

It thus can be concluded that small open cavities on the 
external surface can appreciably reduce the pemilssibie sound pressure for full 
chord laminar flow, even though such cavities are closed inside the wing.  In 
order to avoid premature transition due to open surface cavities in the presence 
of external sound, all static pressure orifices and nonsucking slots were care- 
fully sealed during the major phases of the investigations. Naphthalene subli- 
mation studies were conducted to check whether or not the test surface was 
sufficiently wrooth to prevent premature transition from surface disturbances 
such as surface cavities, roughness, etc. It might be suspected that other 
surface disturbances such as surface roughness, steps, etc., might also be more 
critical in the presence of strong external sound. A preliminary experiment 
with a relatively large surface roughness showed local transition downstream of 
the roughness in the presence of strong external sound. Without sound full chord 
laminar flow was observed. The smooth wing without roughness was laminar to the 
trailing edge in the presence of the external sound. This experiment indicates 
that the maximum permissible height of a surface roughness and possibly other 
surface disturbances for full chord laminar flow may be reduced by the presence 
of strong external sound fields. 

(5) Observations of the State of the Boundary Layer and 
Transition with External Sound by Means of Naphthalene 
Sublimation Studies for Straight and Swept Wings 

Figures 102 to 126 show representativo naphthalene 
subl licit ion photographs of the test surface of the wing with external sound. 
When a saturated solulAon of naphthalene in petroleum ether is sprayed on the 
model surface, a thin white layer of naphthalene particles remains on the sur- 
face after the ether evaporates. As th3 air flow passes over the model the 
higher shear stress where the boundary layer Is turbulent removes the white 
naphthalene powder by sublimation.  The resulting development shows white areas 
where the boundary layer remains laminar and clear areas where the boundary 
layet is turbulent. 

On the straight wing sevt.al attempts were made to check the 
nature of transition under the influence of external sound by naphthalene spray 
flow visualization.  In general, transition on the 17-foot chord, 4-percent-thlck 
straight wing was too gradual to obtain sharp sublimation pictures.  There are, 
moreover, paint-filled regions on the wing opposite the joints in the under skin 
panels that confuse the flow visualizations. As a result D? these difficulties, 
only a few sublimations were obtained.  Figure 102 is the clearest of the flow 
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(5) Observation« of the State of the Boundary Uver and 
Tranaltlon with External Sound bv Mean« of Naphthalene 
Subllwation Studie« for Straight and Swept Wlpgg (continued) 

vlcualizatlon photograph«. The flow direction over the wing is fron right to left 
and the aodel span« the test «ection from floor to ceiling. The vertical white 
band adjacent to the signboard 1« paint filling, as is the similar spanwlse band 
at left center. For this sublimation picture, the spray was applied fron Just 
behind the front paint stripe to the extreme left of Che picture. The turbulent 
region is shown by the dark area extending from the center of the picture down- 
stream (to the left). Transition for the external sound field of 123 db at 863 
cps occurred at 12 percent chord with turbulent streaks about two inches apart. 
This forward portion of the wing had already been found to be critical to fre- 
quencies In the above 800 cycle region. The two-inch streak transition pattern 
corresponds to that described in Reference 38 for the laminar boundary layer 
breakdown on a flat plate following amplified Tollmien-Schlichting waves. 

During the early phase of the swept wing experiments premature 
transition in the presence of external sound was often experienced in the region 
downstream of surface static pressure orifices or open nonsucking slots and simi- 
lar surface cavities, even though leakage out of the wing surface had been 
prevented and no transition was observed in the absence of sound. As an example, 
the naphthalene sublimation pictures show turbulent wedges downstream of a static 
pressure orifice and a «mall hole In an improperly sealed slot when external sound 
was applied (Figures 103 and 104 ), Without sound these turbulent wedges did not 
develop. During the later stages of the Investigation the critical sound pressure 
for transition was raised considerably by carefully sealing the surface static 
pressure orifices and nonsucking slots. Local surface disturbances which might 
cause premature transition in the presence of external sound were periodically 
checked by naphthalene sublimation observations and eliminated whenever they 
occurred. 

With the swept wing model in clean condition, i.e., with the 
static pressure orifices and nonsucking slots sealed, the following observations 
were made when external sound was applied. Under the influence of lor^itudinal 
and transverse sound of discrete frequencies and different bands of white noise 
transition was generally observed in the region of the flat pressure distribution 
and at the beginning of the rear pressure rise. With moderately strong sound of 
discrete frequencies the naphthalene pictures (Figures 105 to 114 ) show that 
transition in this case was often preceded by the formation of chordwise stria- 
tions of one-eighth to one-tenth of an inch spacing. These striatlons became 
rapidly more pronounced in downstream direction until transition started. Their 
location varied for different sound inputs and frequencies. Figure IU3 [run 292, 
transverse sound (speakers) of 127 db sound pressure and 200 cps at Re = 4.1 x 10^, 

striatlons between 45 and 49 percent chord]; Figure 106 [run 315, transverse sound 

(speakers) of 121 db and  363 cps at ^ - 5.8 x 106, striatlons between 46 and 30 

percent chord]; and Figure 107 [run 304, transverse sound (speakers) of 129.3 db 

and 667 cps at Rc » 3.8 x 10°, striatlons between 63 and 67 percent chord] are 

examples of the striation pattern in the midchord region of the wing.* The 

*The persistence of some naphthalene downstream (left) of the transition region 
in Figure 105 Is due to the establishment of a laminar sublayer in the turbulent 
boundary layer and should not be misinterpreted as a return to laminar flow. 
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(5) Observations of the State of the Boundary Uver and 
Transition with External Sound bv Means of Naphthalene 
Sublimation Studies for Straight and Sweot Wings (continued) 

strlatlons were usually »ore clearly defined at lower Reynolds numbers, between 

Rc = 6 x 10° to 8 x 10 ; they were observed, however, up to the maximum test 

Reynolds number of 12 x 106. The existence of strlatlons at other spanwise 
locations is Illustrated in Figure IÜ8 [run 286, longitudinal sound (transducer) 

of 133 db and 400 cps at Re « 4.1 x 106, transition at 46 percent chord in the 

upper and at 49 percent chord in the lower part of the wing, respectively]. 

The strlatlons and transition probably developed first in a 
spanwise area of maximum sound output. Figures 105, 108, in and 114 show quite 
different transition locations, depending on the external sound field. 

The longest strlatlons, of 11 percent chord length, are 
recorded in Figure 109[run 290, transverse sound (speakers) of 125 db and 400 

cps at Re = 4.1 x 10 , strlatlons betwee i 45 and 56 percent chord!. 

Without external sound full chord laminar flow was maintained 
with the front slots open but without suction. In the presence of external sound, 
however, strlatlons and transition were observed quite far forward on the wing, 
as illustrated in Figure 110 (run 447, longitudinal sound of 128.5 db and 1000 

cps at Rc 3 8.1 x 10
6, transition at 9 percent chord) and Figure 111 & 112 rrun 999, 

transverse sound (transducer) of 130 db and 1000 cps at Rc « 8.1 x 10 , transition 

at 34 percent chord 1. The most rearward location of transition caused by chord- 
wise strlatlons are presented in Figure 113 vrun 474, longitudinal sound of 130 

db and 1000 cps at Rc = 8.1 x 10
6,  transition at 68 percent chord) and Figure 

114 (run 460, longitudinal sound of 134.5 db and 781 cps at Rc = 8.1 x 106, 

transition at 70 percent chord). 

The observed strlatlons closely resemble those observed by 
the British (References ^7 and ftuj and later by NASA Ames in the front part of 
swept wings at high Reynolds numbers. Without external sound full chord laminar 
flow existed without strlatlons within the test Reynolds number range.  It thus 
appears that transition in the region of the flat pressure distribution on a 
swept laminar suction wing under the influence of external sound of discrete 
frequencies was often preceded and probably caused by the development of closely 
spaced stationary chordwlse disturbance vortices which apparently cause the 
observed strlatlons. 

In many cases, especially with strong sound fields of higher 

frequencies (800 to 1000 cps at Rc = 8.2 x 1Ü6 and sound pressures above 130 db) 

and with relatively weak suction in the front part of the wing, rither regularly 
spaced turbulent wedges, or stripes, of afproximataly three-quarters-inch spanwise 
spacing developed in the transition area (Figures 114 to 119), The stripes bear 
a marked resemblance to the ultimate breakdown of two-dimensional flow oi. the 
straight wing, Figure 1 ^', The stripes were particularly well developed at 
sound frequencies which roughly coincided with the frequencies for amplified 
oscillations in the tangential boundary layer flow upstream of transition, i.e., 
with increasing wing chord Reynolds numbers, these stripes were generally more 
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(5) Obtervtlorw of the State of the Boundary Laver and 
Traniltlon with EKternal Sound bv MCAH« of Naphthalene 
Subllaation Studlet for Straight and Swept Wing« (continued) 

pronounced at the higher sound frequencies, and vice versa. A series of runs at 
increasii« sound pressure levels of 125, 127, 130 and 133 db with the longitudinal 
transducer sound source at 800 cps and Re ■ 8.1 x 106 with transition at 50, 49, 
48 and 44 percent chord, respectively, are shown on Figures 113 to 1ISL Coexis- 
tent stripes and striations are shown in Figure 119 (longitudinal transducer, 
134 db, 785 cps, i^ ■ 8.1 x 106, striations at 63 to 66 percent chord above, 
stripes at 44 to 49 percent chord below,, run 335). This stripe pattern transi- 
tion on the swept wing is not fully identical, however, to the straight wing 
transition because the stripes were preceded by chordwise striations of one- 
eighth to one-tenth inch spanwise spacing (Figure 112), indicating the sinul- 
taneous existence of closely spaced chordwise disturbance vortices. 

Under the influence of external sound, according to tran- 
sition observations by aeans of naphthalene sublination studies and hot wire 
■easureaents, transition started in the swept wing boundary layer at a consider- 
able distance fro« the wing surface when transition resulted fro« the instability 
of boundary layer crossflow. In other words, transition due to boundary layer 
crossflow instability occurred sooewhat earlier in the outer regions of the 
boundary layer than the naphthalene sublination pictures would indicate. This 
saae observation was previously made during the first low drag suction experiments 
on the same 30° swept low drag suction wing in the Michigan 5- by /-foot low- 
turbulence wind tunnel (Reference 69).  Similarly, on a rotating disc, where 

^1 transition is caused by the instability of boundary layer crossflow, the second 
author observed the beginning of transition (by means of stethoscc^«>) at a 
considerable distance from the wsll. The start of transition in a crossflow 
boundary layer at such relatively large distances from the wall is probably a 
result of the strong amplification of boundary layer oscillations in the critical 
layer of the crossflow boundary layer in the vicinity of the inflection point of 
the crossflow profile (Reference 6 ). 

Transition usually was not observed on the swept «ring in the 
region of the rear pressure rise in the presence of external sound, except at 
high sound frequencies (3500 to 4000 cps) with the rear surface static pressure 
orifices open, or with marginal suction in the region of the rear pressure rise 
when premature transition in the rear part of the wing had already occurred 
without sound. When suction between 63 and 72.5 percent chord was considerably 
reduced below the minimum for full chord laminar flow, transition occurred 
between 90 and 94 percent chord both with and without external sound (Figure 124). 
In this case transition in the rear part of the swept wing was not appreciably 
affected by the external sound field. 

With optimum suction for minimum drag, regular chordwise 
streaks of approximately ono-third to one-half inch spanwise spacing at 

Rc - 8.1 x 10^ and 5.8 x 10**, respectively, were observed between the wing 
trailing edge and approximately the 75 percent chord station (Figures 120 and 
1 21). These streaks developed with and without «sternal sound on the swept 
wing but were not observed on the straight wing. No external sound field was 
applied for Figur« 122. With increasing sound pressure there was a tendency 
for turbulent wedges to develop from the more pronounced streaks (Figures 120 
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(5) Observations of the State of the SouiKtorv Laver and 
Transition with External Sound bv Mean* of Naphthalene 
SubliBation Studies for Straight and Swept Wings (continued) 

and 121). At 121 db (Figure 123) striations and transition occurred around 50 
percent chord in the center of the wing, while the one-half inch spaced streaks 
are still visible in the upper portion of the wing. With increased suction in 
the region of the rear pressure rise the streaks disappeared. 

Transition with white sound occurred without developing 
any chordwlse striations or regularly spaced turbulent wedges. For exaaple, 
Figure 125 shows a naphthalene sublimation picture for the swept wing with 
longitudinal sound of 300/600 cps and 129.5 db sound pressure (run 310) at a 

wing chord Reynolds number Rc ■ 5.8 x 10^. Transition occurred at 63 percent 

chord. 

Under certain conditions transition occurred in a different 
manner, as discussed previously. The naphthalene sublimation picture. Figure 
126, shows chordwlse striations of one-quarter Inch spacing between 6 and 9 
percent chord originating from the location of the suction holes in the inner 
wing skin located directly underneath the third suction slot at the 5 percent c 
chord station. Transverse sound of 800 cps and 134 db sound pressure was 

applied at Rc = 8.1 x 10 . No suction was applied through the forward slots, 

which were left open. The transition pattern was probably caused by the action 
of intermittent in and out flow of the suction holes from the chamber underneath. 
When the suction holes were displaced in chordwlse direction with respect to the 
corresponding slot, no striations were observed downstream of these holes in the 
presence of sound. This appears to duplicate the effect recorded with strong 
internal sound fields on Figures 149 to 132 and discussed in the chapter on 
Internal sound (Part 9). 

(6) Hot Wire Observations on the Straight Wing 

Although voltmeter readings were often taken, most of the 
hot wire readings were recorded by means of photographs of the oscilloscope 
traces. Hot wire photographs from the forward portion of the wing for runs 
without suction for various wing chord Reynolds numbers and chord stations are 
presented in Figure 127. Each photograph contains three sets of traces. The 
clean sine wave trace is the reference frequency of 500 or 100 cps and the super- 
imposed irregular trace Is the hot wire signal, proceeding from left to right. 
The amplifier noise causes the very short period oscillations on the hot wire 
signal that are particularly evident in the low Reynolds number data where a 
higher amplifier gain was necessary to make the boundary layer fluctuations 
evident. By comparison to the frequency reference signals, the boundary layer 
oscillations are found to correspond to: 

Frequency, cps Percent Chord Chord Reynolds number 

330 11.4 8.4 x loj 
320 12.9 8.4 x U£ 
310 15.7 8.4 x 10° 
445 15.7 11.5 x 106 

750 11.4 14.2 x 106 

850 11.4 
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(6) Hot Wire Ob»€rvtioni on thg Str*tght Wina (continued) 

On Figure 128 the nondlaenalonal frequency «MS plotted versus the boundary layer 
Reynolds nuaber for these data points. The solid line curve on Figure 128 is the 
neutral curve for the Blaslus flat plate profile, according to Brovn (Reference 
6 ). For the present case, the flow acceleration over the nose of the 4-percent 
wing give« a »ore stable profile. The dotted line neutral curve on Figure 128 
was eatlnatod to be applicable to the present data. As one would expect, the 
oscillations aeasured In the boundary layer fall In the ■axlaua aapllflcatlon 
portion of the Instability region. These Iminar boundary layer oscillations 
have a distinct rcseablance to the laainar boundary layer oscillations on a flat 
plate as recorded in Figures 9 and 10 (Reference 48). The sUbllizing power 
of suction was clearly deaonstrated when these boundary layer oscillations 
disappeared completely upon the application of very snail aaounts of suction. 

The hot wire data for the straight wing under the influence 
of external sound are presented in Figures 129 to 138. Figures I29f 130 and 131 
show oscillograph records for hot wires in the boundary layer at a height of 
0.073-Inch with a 248 cps, 105. 110, and 115 db external sound field for various 
chord locations fro« 46.5 to 74,8 percent c* For this 248 cycle case the varia- 
tion of aapllflcation with tlae was particularly pronounced, giving the hot wire 
response the overall appearance of a nodulated wave. As the flow was observed 
at higher external sound pressures or further downstream, the areas of high 
anpllflcatlon grew rapidly to the characteristic turbulent spots that precede 
tranaltlon. In this case, full transition occurred very soon after the forma- 
tion of turbulent spots. The turbulent regions appeared as blanks in the hot 
wire trace because the aaplitudes and frequencies were too great to show at the 
oscilloscope settings used. The suction distribution used for these runs was 
adjusted for no transition ahead of 45 percent chord with external sound, for 
no transition without sound at 45 to 52 percent chord, and at a aedlun suction 
level fro« 52 percent chord aft. The resulting suction (Figure 132) was, then, 
weakest fron 45 to 52 percent chord. As evidenced on the last photograph of 
Figure 130» particularly, the oscillations that did nut grow enough to cause 
turbulent spots in the weak suction region were rapidly damped further downstream. 
To illustrate this point, the values of u'/U« for the various sound pressure levels 

of external sound avaiable at 248 cps were plotted versus x/c on Figure 133. The 
solid lines on the figure show the values for the most amplified portions of the 
hot wire signal, while the dotted curves are taken from the average signal levels 
between the peaks. The discontinuance of a solid curve represents the fornation 
of the first turbulent burst, while the discontinuance of a dotted curve (before 
70 percent c) indicates fully turbulent flow. The interesting feature of this 
figure is that the laminar oscillations in the boundary layer were strongly damped 
beyond about 65 percent chord. The damping was probably due to a combination of 
the Increased suction behind 52 percent chord end the evidence of Figures 121 to 
124, supporting the stability theory prediction that 248 cps fluctuations would 
be damped in the aft portion of the wing. 

The last photograph of Figure 130, depicting intermittent tur- 
bulent bursts spaced by unaaplifled laminar oscillations, is now clearly inter- 
preted as a typical hot wire record of a partially laminar boundary in a stable 

*ln these and the remaining oscilloscope photographs the reference frequency trace 
appears below the hot wire signal and the second and third records are shown at 

a much slower sweep rate to give a longer record of the varying response. 
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(6) Hot Wire Observation» on the Straight Wing (continued) 

region that is dovnstrean froa a critical region where turbulent spots have 
developed.* In addition to 248 cps, all other sound frequencies that gave 
«ny transition were run for the suction distribution of Figure 132. Since the 
transitions at other frequencies were similar to the 248 cps except for the fact 
that they occurred at a higher sound pressure level, the oscilloscope photographs 
are not included in this report, ^igure 1-W, however, shows the critical sound 
particle velocity ratio (u'/U^^j-jj. with external sound required to cause tran- 

sition plotted against chord scitlon for these other frequencies. The uncagged 
symbols represent transition positions as determined by the total head rake and 
the tagged symbols by hot wlrt observations. The same data are presented again 
in the form of (u'/U-)    to cause transition vs sound frequency in Figure 135. 

crit 
The discrete frequency curve here suggests that a frequency below 248 cps might 
be more criticalt Discrete frequencies at 200 cps and below have generally been 
avoided, however, because they seemed to cause an Increase in the wind tunnel 
turbulence level that lasted for a matter of several minutes. Nevertheless^ lii 
view of the octave band random noise data which consistently showed earlier trtn- 
sition on Figure 133 for the 300/600 band than for the 150/300 band, trannitlon 
occurring below 248 cps must have developed at a generally higher level of 
external sound pressure. From the data on Figure 135, one concludes that the 
midchord portion of the wing was again most sensitive to a frequency range of 
about 200 to 500 cps. 

Chordwise traverses from 9.2 to 28.8 percent chord were also 
conducted with the hot wire located at a distance of 0.044 inch above the surface 

for Rc B 14.2 x 10 with medium suction forward and high suction over the rest 

of the wing. Under these conditions it was possible to obtain transition over a 
frequency range from 384 to 1005 cps for the existing boundary layer conditions. 
Figure 136 shows the external disturbance level (u'/Uoo)crit required to cause 

transition as a function of chordwise location of transition. The frequency 
dependence of transition is presented in Figure 137 t  where the critical dis- 
turbance level was plotted vs frequency. Although the dependence of transition 
on frequency was not strong on Figure 137, transition did occur at lower exter- 
nal sound disturbance levels for 500 to 900 cps. 

Figure 138 shows pictures of the boundary layer oscillations 
for 120 db of 775 cps external sound. The amplified laminar oscillations on 
Figure 13S were uniform within 15 percent of the mean value. Both this uniform 
type and the modulated type nf amplified oscillations (Figures 129 to 131) 
occurred on the swept wing as well as on the straight wing without any apparent 
dependency on frequency or c wrd location. Since the slots In this forward por- 
tlor ot the straight wing were more than 2 percent chord -- or four inches -- 
apart (Table IA  ), the boundary layer oscillations can be expected to appear 
alternately grown or damped on Figure 13«, according to whether they were observed 
ahead of or behind a slot. As a esult, Figt re 138 is not necessarily a reliable 
indication ot the local chordwise amplitude trend of the boundary layer oscilla- 
tions.  In addition, the oscillograpa records were too short to give an adequate 

♦Also see the swept wing hot wire record (Figure 140) and discussion in the 
next chapter (Part 7). 
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record of th« fr^quene? for thu  occurrence of turbulent «pet». For e&*aple, 
eithiRtgh the photogrephs for 15.6 end 28.8 percent chord Appeared to «how «ore 
frequenr turbulent burett then «t 19.8 end 24.6 percent chord, ccocjf^nt visual 
obeetvetion« Indicated the «ease frequency of burst» downstr««» of 15,6 percent 
chord end no bursts et 9,2 or 12.1 percent choid. The t*r^ significant feeture« 
of Figure 13$ are that the turbulent spots occurred between 12.1 anc 15.6 percent 
chotd and that the spots were spreading out by 28.6 percent chord under the influ- 
ence of the 120 do, 77%  cpa external sound field. The chordwise ioi&tion  of 
transition for this 775 cps external sound case. Figure 136, at low sound pres- 
sure levels, figure 139, was thus the result of spreading turbulent spats Irow a 
critical region upstream, 

<7) Hot Wire Observations on the Swept Win& 

Before any swept wing quantitative ho* wire leadings were 
•ade, a series of o*cillo»cope pictures were taken at various locations in the 
vtng boundary :syer for a wide variation of suction and boundary layer conditions. 
Figure 1^9 is an oscilloscope photograph of the i.ot wire signal auperiagsosed on 
the constant jseplitade input sound field signal. This particular record is from 
a u* wire at 0.55 c in a 449-cycl« sound field for sound pressure levels of 125 
db at th« topf 126 db in the Middle and 127 db at the bottca of Figure 139. Low 

suction ws applied at Rc • 5.8 x 10
6 <CQ » 3.69 x 10*4) with  the first five  slots 

sealed. This particular picture is of interest because the botto» record at 127 
db caught the changing phase of an aaplifying oscillation* A  longer record at 
this condition would characteristically shew aaiplified oscillations of increasing 
ami iecrea^tng «agnitude without any transition. As the sound level was increased, 
aaplifled oscillations exceeded a critical magnitude and turbulent spots were 
observH in the boundary layer. At still higher sound levels the turbulent spots 
aerged together» and fully developed turbulent flow uns  then observed with the 
hot wire. 

The scope traces on Figure 140 were obtained with a hot -rfire 
located at the 0,9 c station and are tyical of the start of transition in the 
region v>f the rear pressure rise. Here, the trace is again fro» left to right, 
but the sweep rate has been decreased to obtain a longer time interval record. 
At the 0.9 c chord location the disturbances in the boundary layer were turbulent 
spots which were not preceded by locally anpllfied boundary layer oscillations. 
These spots presumably had their origin in the occasional occurrence of an aapli- 
fled boundary layer oscillation in the aidchord region of the wing while the 
intemediate asplified oscillations were daaped out by the relatively strong 
suction in the region of the rear pressure rise (see Figure 130, also). 

As the external sound field was increased above that of  . 
Figure 140, aore turbulent spots originated in the region of the flat pressure 
distribution, and the existing spots spread until the flow was completely tur- 
bulent. The above suggestion that the cause of transition on the aft wing is 
a result of «mplified oscillations in the «idchord region is supported by the 
experimentally observed fact that laninar flow can be re>establ' hed by sta- 
bilizing the boundary layer in the region of the flat pressure distribution by 
aeans of increased suction in the 0.2 to 0.6 c portion of ehe wing. 
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<7) Hot Wlra Ob«crvation» on the Swept Wing (continued) 

Figur« 1*1 shows a typical plot of the velocity fluctuation 
u'/U in the Isainar boundary layer versus the distance fro« the surface for vari- 

ous stations x/c at Rc «* 8ri x lö^ in the presence of longitudinal sound of 400 

cp« frequency vith minimm  suction. Here the sound pressure was increased until 
transition started. In the region of the flat pressure distribution of 45 per- 
cent chord the ratio u'/U of the tangential vt'oclty fluctuations u' resched 
■axlnuts values of one percent of the local potential flow velocity U in the 
vicinity of the wing surface. The asxiosua values w'/U of the velocity fluctua- 
tion v* in the crossfiow direction were generally soaewhat aaaller than the 
corresponding ratios u'/U. With increasing distance y fro« the wing surface, 
u* decreased rapidly to the approxinate values for the sound particle velocity. 
It Is not certain whether or not the fluctuations toward the edge of the boundary 
layer were 180° out of phase with the fluctuations close to the wall. 

As a result of the presence of standing waves in the test 
section, the sound pressure at the hot wire location evaluated froa the hot 
wire readings did not always correlate with the reference sound pressure as 
seasured by the reference eicrophone. 

The fluctuation neasureaents of u' and w' it*  the boundary 
layer in the region of the rear pressure rise at 90 percent chord showed siailar 
results as at the 45 percent chord station. The observed velocity fluctuations 
at this location, however, were considerably saaller than those in the region of 
the flat pressure distribution, particularly at high sound frequencies. At the 
90 percent chord station the strongest velocity fluctuations were usually observed 
at rather lew sound frequencies (150/300 cps). At lower frequencies increasing 
suction did not appreciably change the velocity fluctuations in the boundary layer 
at the 90 percent chord station. At higher sound frequencies u'/U and w'/U decreased 
sonewhat with increasing suction. 

(8)  Influence of Internal Sound in a Suction Duct on the 
Straight Wing 

Boundary layer transition nay be caused by internal noise and 
standing sound waves in the suction duct.  In order to investigate the influence 
of internal sound on the behavior of an unswept laminar suction wing, preliminary 
experiments were conducted on the influence of Internal sound disturbances, 
generated in a suction chamber of the 17-foot chord straight laminar suction 
wing, on the behavior of the boundary layer on this wing. Sound from six 
speakers was introduced into chamber number 9, which Includes seven suction 
slots located from x/c « 0.456 to 0.518 (Figure 66 ).* The internal sound field 
was surveyed by moving a microphone attached to a long rod along the suction 
chambar. Ar discrete frequencies of 228, 582, 1221, 1611 and 4147 cps strong 
standing sound waves existed due to reflection from the end bulkhead, which was 
perpendicular to the suction chamber axis. For octave bands of white noise the 
sound pressure level was quite uniform along the duct. The reference microphone 
reading for internal sound was taken at a station which indicated a peak sound 
pressure level for the discrete frequencies. 

♦This experimental setup was designed by T. R. Rooney, Norair Dynamics group, 



(S) Inf luw of Inf rmi Sound In a Suction Duct oo the 
f Stricht Vim  (continued) 

The data for xuns with Internal sound In chaaber 9 are pre- 
sented in Figures 142 to 132. The critical sound pressure and the corresponding 
critical sound particle velocity ratio ^'/^c^t («•suaing plane sound waves) 

for transition were plotted versus sound frequency for various wing chord Reyn- 
olds nuaber and chordwise suction distributions on Figures 1^2 to 148. These 
figures indicate that the critical sound pressure level for transition had a 
alniausi in the frequency rai^e fro« 100 to 600 cycles. This critical frequency 
band for the aldchord portion of the wing correlates with the external sound 
field results and with the frequencies for aapllfied chordwise boundary layer 
oscillations. As with external noise. Increased suction had a powerful sta- 
bilizing effect, rapidly raising to higher values the critical sound pressure 
for transition. 

On Figures 142 to 143 the overall suction level has been 
raised to Maintain Isainar flow under the Influence of internal sound disturbances, 
while Figures 146 to 1^8 show the local suction Increases necessary for the aaln- 
tenance of full chord laainar flow in the presence of increased internal sound. 
For a practical case where all ducts would have coaparable sound pressure levels, 
the increased overall suction level (Figures 142 to 143) would generally give a 
better indication of the suction re<;iuireaents than the locally Increased suction 
(Figures 146 to 148). 

Very high peak sound pressure levels were attained with sound 
of discrete frequencies as a result of standing waves. With these strong stand- 
ing wsves the effectiveness of increased suction was reduced to the point where 
a large Increase in suction was necessary to aalntaln full chord lasdnar flow. 
A subliaation check at 150 db, 582 cps (Figures 149 and 130) gave visual repre- 
sentation of the transition pattern for this very strong standing wave disturbance. 
Transition originated in the regions of aaxlnuai sound pressure of the standing 
wave opposite the one-half inch spaced row of holes that provided a passage fron 
the snail plenun chaabers under the slots into the suction chaabers (Figure 63 ). 
Opposite each hole there were two streaks that developed into turbulent wedges 
further downstrean in the sane aanner as transition froa three-dlaenslonal rough- 
ness particles. These streaks that are attributed to trailing vortex pairs were 
observed by Goldsaith and Meyer to originate froa sucking or pulsating flow 
through a hole (Reference 97).  In one case during the swept wing acoustical 
tests (Figure 126), transition also originated froa the holes under the slot 
for very strong external sound disturbances when the slot and holes were in line. 
The holes under the 0.005-inch slots In chaaber 9 were 0.031-inch in diaaeter 
for the forward slot and 0.029-Inch for the rest. The transition zones at the 
bottoa, alddle and top of Figures 149 and 130 initiated froa slots 28, 29 and 
30, which are in line with the drilled holes. 

Figures 131 and 132 were taken at internal sound pressure 
levels of 146 and 159 db for 200 cps. Transition was clearly slallar to Figures 
149 and 130. For the very high SPL of Figure 132 soae inter   ng additional 
features appear. Transition in the aldspan portion of the wing initiated froa 
the first slot in chaaber 9 (slot nuaber 24), which has the holes displaced a 
little aore than the hole radius froa the slot centerline. With the aligned 
slot and hole pattern of slots 28 and 29 (Figure 131) transition existed at 146 
db. For this particular case, than, offsetting a hole by one radius allowed a 
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(8) Influence of Intetwl Sound in g Suction Duct on the 
Straight Wing (continued) 

13 db increase in disfjrbance level, in  addition, at the bottoa of the picture, 
toae vortex streaks initiated fro« slot nuaber 23, the last slot of the upstreaa 
chasber (nuaber 8), which did not have any directly introduced internal sound 
disturbance. The holes at slot 23 were again directly below the slot in the 
region of transition. At the saae time,  there is no transition in the lower 
region from slot« 24, 25, 26 and 27, which are in chaaber 9, but have holes 
offset by at least one hole radius. Finally, downstreaa of the lower transition 
pattern the disturbances froa the holes toward the bottoa of slots 28 and 29 are 
evident in the thin fila of naphthalene re saining in the laainar sublayer. The 
conclusion froa Figures 149 to 132 is that at the extremely high disturbance 
levels, where direct transition due to puaping action through the holes and slots 
occurred, transition was delayed considerably when the drilled holes were offset 
froa the corresponding slot. Although this direct transition is at an internal 
sound level well above any that would probably be allowed In an actual design, 
the hole offset effect very likely Influenced transition due to internal sound 
at lower pressure levels. In any case, in the construction of laainar flow sur- 
faces, the holes and slots should be offset whenever there is a possibility of 
strong sound fields and standing waves. 

(9) Influence of Mechanical Vibrations of the External Wing 
Surface on Transition on a Straight Low Drag Suction Wing 

Considerations of the type of stricture conteaplatad and a 
survey of existing data on flying airplanes Indicated that peak panel accelera- 
tions of abou£ 10g in the 100 to 1000 cycle frequency range could be expected. 
The question then arises as to the Influence of aechanical vibrations of the 
external «ring surface on the behavior of a laainar suction wing. In order to 
answer this question for an unswept laainar suction wing» low drag suction experl- 
aents were conducted to check the feasibility of exciting panel vibrations on the 
present 17-foot chord wing. After the two spars adjacent to chaaber nuaber 9 
were disconnected froa the supporting structure to provide a acre flexible wing 
structure, the wing vibration nodes were obtained in the BLC shop, using a 
standard vibration exciter. Since nearly two-dlaenslon&l panel aodes of aore 
adequate acceleration were obtained, a high-speed, d.c. motor-driven, recipro- 
cating mass shaker was Installed in a cutout in the spar web laaediately upstream 
of chaaber number 9. The acceleration was controlled by using shafts of differ- 
ent eccentricity to drive the oscillating mass while the frequency was set by 
regulating the supply voltage to the d.c. motor. The motor power-limited the 
shaker to about 260 cps frequency and 46g peak panel acceleration for inter- 
mittent operation. For the high accelerations (large shaft eccentricity) the 
wave forms were reasonably sinusoidal, but for the allayed excitation in the case 
for 10g at 100 cps (small shaft eccentricity) the accelerometer response had a 
large content of higher harmonics. Although, for the above reasons, the test- 
measured values of acceleration and frequency are somewhat nebulous, the values 
did correspond to repeatable conditions of model response because the internal 
vibrator speed settled out at the natural frequencies of the structure. Although 
mode shcipes were again determined with the internal shaker prior to model instal- 
lation In the tunnel, the frequencies were not repeatable with the model mounted 
in the wind tunnel. For the wind tunnel expatiment, then, the accelerations were 
determined by searching out the peaks with a roving accelerometer pickup, and no 
time was available to redefine the complete mode shapes. According to this brief 
survey, modes of vibration at 100, 190 and 240 cps were reasonably two-dimensional, 

-149- 



(9) Inf Juane« of W»cl^nlcAi Vlbration« of thm faf mal Wing 
Surfnc« on Tg«n«ltlon on ft Str»l«ht Lot» Dqg Suction Wln£ 
(contlnuod) 

Tb« data for theta pralialnary experlaental Investlgatlcns 
on the Influence of «irface vibration on transition are presented In Figures 
133 Co 151 "in all Instances of 10g peak acceleration or sore, suction had to 
be increased above thm  alnlaua drag value to Maintain full chord Isalnar f lev. 
Figure 153 shows the Increase In suction quantity and drag that applied to the 
4«percent-thick straight wing vhen full chord laminar flow «as re-established 
in the presence of surface vlbr«clons by raising the suction level over the 
whole wing, whereas Figures 154 to 157 give the saae data for cases where the 
suction distribution «as locally adjusted. In the case of vibration excitation, 
in contrast to the internal sound case, the disturbance was transsitted through 
the structure to the forward part of the wing to require suction Increases well 
upstream of point of excitation as evidenced on Figures 154 to 157. For a peak 

panel velocity ratio v'/U» > 20 x 10'*, the maintenance of full chord laminar 
flow by raising suction level required a 24 percent Increase in suction coeffi- 
cient CQ and a corresponding 5 percent Increase in equivalent drag, CQ , compared 

to a case with no vibration (Figure 153). With the suction applied OP individual 
chambers as required, the suction quantity and equivalent drag Increased an aver- 
age of about 5 percent and 1 percent, respectively. Since panel velocity ratios, 

v'/U«, In the order of 2 x 10"3 are possible, the present preliminary vibration 

Investigation indicates that some additional suction might b« required for thin 
straight wing laminar suction aircraft. 

(10) gffact« of Combined Internal Sound. External Sound, and 
Surface Vibration on a Straight Wine 

Figures 158 and 159 show the combinel disturbance effects 
of internal sound, external sound, and panel vibration. Up to this point inter- 
nal sound, external sound, and vibration had been applied to the straight wing 
model separately io note their Influence on transition. Of course, the model 
response to each of the input disturbances involves, to a lessee degree, the 
modes of the other two disturbances. For example, the external «mnd caused 
internal noise in the duct and excited some panel vibration, etc. Figure 158 
shows in block diagram form the Increase in suction level above minimum drag 
suction required to maintain laminar flow at various levels and combinations of 
the three different disturbances. Several features of combined effects are 
evident here. First, where one disturbance was predominant, the required suc- 
tion to maintain laminar flow for the combined effects was practically the same 
as that required for the msjor disturbance alone. This appears on the bars labeled 
3 and 4 where the vibration alone and the vibration combined with Internal and 
external disturbances are laminar for the same suction quantity. Secondly, super- 
position of two or three equally critical disturbances required ouch less than 
the proportional suction Increases to maintain laminar flow. For example. Fig- 
ure 159 shows that an average suction Increase of 23 percent was required to 
stabilise for one disturbance, lAille an average of 6 percent bad to be added to 
stabilise against a combination of any two of the equally critical disturbances. 
Moreover, the suction quantity required to stabilise the boundary layer for any 
two of the equally critical disturbances «as generally adequate for all three 
disturbances combined (external noise plus Internal noise plus surface vibrations). 
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(10) ElUcf  of Cqibined Internal Sound. External Sound, and 
Surface Vibration on a Straight Wing (continued) 

The results obtained on the 4-p«rcent-thick straight wing 
vlth Internal noise and surface vibrations are applicable to unswept low drag 
suction wings; they are not generally applicable« however, to swept laalnar suc- 
tion wings. 

(C) Hypothesis of the Mechanls« of Transition on a Swept Lasilnar 
Suction Wing under the Influence of Extetnal Sound 

While the frequency dependence and aechanlsa of transition on 
the straight lanlnar suction wing under the Influence of external sound corre- 
lated to Tollalen-Schllcht.lng wave aapllflcatlons and observed breakdown, the 
transition on the swept wing In the presence of external sound was not generally 
explained by aoaU-disturbance theory. 

The naphthalene flow pictures showed that transition under the 
Influence of external sound In the area of the flat pressure distribution was 
usually preceded by the formation of closely spaced chordwise strlatlons of 
approxlaately one-eighth to one-tenth Inch spacing. These strlatlons becaae 
rapidly sore pronounced as transition was approached. Without external sound 
no strlatlons were observed at the test Reynolds nuabers. The observed strla- 
tlons reseable those experienced by the British (References 87 and 8?)  and later 
by NASA Aaes at high Reynolds numbers In the front part of swept wings. Indicat- 
ing the existence of stationary chordwise disturbance vortices. Thus, In the 
presence of external sound, transition on a swept lanlnar suction wing generally 
occurred In the region of the flat pressure distribution and was preceded by 
closely spaced chordwise disturbance vortlses which caused the observed fine 
strlatlons. The question then arises as to the origin of these chordwise dis- 
turbance vertices observed en a swept laalnar suction wing In the region of the 
flat pressure distribution under the Influence of external sound. 

The ordinary stability theory of the boundary layer crossflow, 
assuming Infinitely snail disturbances (Reference 6 )( would predict approxi- 
mately neutrally stable bo^nJary layer crossflow in the region of the flat 
pressure distribution at the test Reynolds numbers. Furthenaore, for stationary 
disturbance vortices of zero wave velocity, no meaningful time frequency of the 
external disturbances can be formed. In order to understand the formation of 
the observed strlatlons, corresponding to chordwise disturbance vortices, and 
the mechanism of transition on a swept laminar suction wing in the presence of 
external sound. It Is evident that the stability theory of the boundary layer on 
a swept laminar suction wing must be further refined. 

In the region of the swept vlng flat pressure distribution the 
maxioua crossflow velocity Is only one to two percent of the freestream velocity. 
Under these conditions, in the presence of strong external sound fields with 
mean sound particle velocity ratios u'/U^-O.OOl to 0.003, it appears questionable 

to neglect higher order terns in the disturbance equations for the boundary layer 
crossflow, as is done in ordinary stability theory, which assumes Infinitely 
small disturbances. According to Stuart (Reference 33), a shear flow or a 
laminar boundary layer which is neutrally stable against infinitely ssnll dis- 
turbances can become unstable in the presence of large external disturbances. 
Under such conditions, according to suggestions by G. Raetz, the Reynolds stresses 
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(G)    Hypottwii of tt» Machmi- of Tr«i«ltion on a Swot 
Suction Wlna undT th» Inf luiic« of Eaf rnal Sound (continuod) 

I 

In an oacllUtint boundary Imfr aay distort the asan boundary layer crossflow 
prof11« in tuch a ■annar as to louar Its stability Halt Reynolds nuabar in the 
presence of large external disturbances. On a flat plate, siailar and quite pro- 
nounced distortions of the Blasius boundary layer profile in the presence of 
strong velocity fluctuations were observed by Klebanoff( Tidstroa and Sargent 
at the National Bureau of Standards (Reference 38). An analysis by Raets indi- 
cates that the distortion of the aean boundary layer crossflow profile by 
external sound alone (acoustic streaaing} would be insufficient to appreciably 
change the crossflow stability Halt, unless disturbances in the boundary layer 
ware eaplified under the action of external sound. The existence of aaplified 
boundary layer oscillations in the presence of external sound mi the present swept 
laainar suction wing, particularly In the region of the flat pressure distribution, 
was verified by velocity fluctuation aeasureaents in the boundary layer with hot 
wires. The observed velocity fluctuations in the boundary layer in the direction 
tangential and normal to the potential flow were generally considerably larger 
than due to acoustic streaaing alone, particularly in the region of the flat 
pressure distribution preceding transition. The observed velocity fluctuations, 
however, were not sufficiently strong co cause transition directly; auch stranger 
velocity fluctuations, uVU« 2 0.03 were observed by Dryden, Schubauer, Klebanoff 

and others in the laainar boundary layer of a flat plate preceding transition 
(References 38 and 90). In the presence of external sound, with the observed 
velocity fluctuations, the aean crossflow boundary layer profile In the area of 
the flat pressure distribution is then probably sufficiently distorted to lower 
appreciably its stability Halt Reynolds nuaber, causing the foraatlon of chord- 
wise disturbance vortices and, finally, transition. 

The question now arisen as to the cause of the aaplified oscl la» 
tions observed in the boundary layer under the influence of external sound. 
Boundary layer velocity fluctuations can be Induced by sound in the direction 
of the sound particle velocity vector. When the boundary layer in this direction 
is unstable, these boundary layer oscillations will be aaplified. According to 
the hot wire aeasureaents of the coaponents of the sound particle velocity, the 
sound field in the test section was generally three-dlaenslonal. As an exa% le, 
when the sound particle velocity vector Is perpendicular to the swept wing lead- 
ing edge, sound can Induce eaplified oscillations into the boundary layer in the 
direction norasl to the wing leading edge. At the aoderately high wing chord 
Reynolds nuabers of the experlaents, relatively weak suction in the leadii« edge 
area and In the region of the flat pressure distribution was generally adequate 
to avoid transition due to the instability of the boundary layer crossflow. 
Under such conditions, in the region of the flat pressure distribution, the 
chordwise boundary layer is not too stable. Chordwlse boundary layer oscillations 
Induced by sound can then be aaplified In this part of the wing. The coaponent 
of these velocity fluctuations in the direction noraal to the potential flow 
Introduces, then, velocity fluctuations into the crossflow boundary layer, as 
observed with hot wires, which aay be sufficiently strong to distort the aean 
croesflow profile in such a aanner as to  lower appreciably its stability Halt 
Reynolds nuaber. Increasing suction in the region of the flat pressure distri- 
bution, before transition will otherwli« occur, reduces the local crossflow 
Reynolds nuaber and at the eaae tiae increases the stability of the chordwise 
boundary layer. At a reeult, the chordwise boundary layer oscillations are less 
aaplified, and the coaponent of these oeclllatlons in the crossflow direction Is 



(G) HTPothetl« of the Mechanif of Trmattlon on > Swot La»lnar 
Suction Wing under the  Influence of EKternal Sound (continued) 

correspondingly reduced. Increasing auction in the region cf the flat preesure 
distribution will thus delay the start of transition on a swept laainar suction 
wing in the region of the flat pressure distribution to higher sound pressure 
levels, as verified experinentally. 

When the chordvise boundary layer in the front half of the swept 
wing wss less stable, i.e., when no suction was applied in the front part of the 
wing, chordwise boundary layer oscillations probably were sufficiently asplified 
in the presence of strong external sound fields to becoae nonlinear and three- 
diaensional, as observed on a laninar flat plate when the originally two-dimen- 
sional oscillations had grown to large saplitudes (Reference 38). Transition 
then started at regularly spaced selective spanwise stations where the chordwise 
boundary layer oscillations had grown sost, thus explaining the fonsstion of the 
rather regularly spaced turbulent wedges in the region of the flat pressure dis- 
tribution with strong external sound. In aany cases the local crossflow stability 
Halt Reynolds nuaber wss sufficiently reduced by the presence of these strong 
chordwise boundary layer oscillations to for» closely spaced chordwise distur- 
bance vortices, indicated by fine striations in the naphthalene subliaation 
pictures, preceding transition (Figure 112 ). 

When the pressure drop through a suction slot is saall (i.e., 
at low flow velocities through a relatively wide slot), acoustical disturbances 
can induce a pulsating flow tLrough the slot of such a Magnitude that the result- 
ing chordwise boundary layer oscillations downstrean of the slot are sufficiently 
asplified to cause preoature transition. Higher local suction rates mist then be 
applied in such slots to increase the pressure drop through the suction skin and 
to reduce the aoplification of boundary layer oscillations downstreaai of the slot, 
thus delaying the beginning of transition to higher sound pressures. This experi- 
ence was gained on the present swept wing asodel with relatively weak suction 
through soi . of the front suction slots. These slots were relatively wide, and 
the pressure drop through the wing skin wa» correspondingly saall. At Rc % 10

7 

transition was observed at 120 db (with white noise of 1200/2400 cps). Increas- 
ing suction in these front slots raised the critical sound pressure for transition 
to 124 db, under otherwise the same conditions. (Sealing the front slots raised 
the critical sound pressure to 123 to 125 db.) 

With increasing wing chord Reynolds numbers, in order to avoid 
transition due to the instability of boundary layer crossflow, higher nondimen- 
sional suction velocities VQ/U,,, /Rc (for equivalent area suction) are required, 

particularly in the region of the flat pressure distribution and especially toward 
the wing leading edge. The chordwise boundary layer then becomes increasingly 
more stable at higher wing chord Reynolds numbers. As a result, the chordwise 
boundary layer oscillations are less amplified and the component of these oscil- 
lations in the direction normal to the potential flow streamline is correspondingly 
reduced. On a swept laminar suction wing one might therefore expect a relatively 
slow decrease of the critical sound particle velocity ratio <u,/ü»)crlt at tran- 

sition with increasing Reynolds number. With minimum suction the experiments 
showed a slightly increasing critical sound pressure at transition with wing 
chord Reynolds number, as long as marginal suction was not too closely approached; 
i.e., <u,/UaB)crit decreased with wing chord Reynolds number at a somewhat slower 
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(C) Hypoth««!« of thm Hmehmim of Trmtltion on | S^pr ifr^n*r 
■ Suction Wing undT th« Influmc« of fatarnal Sound (continued) 

rate than inversely proportional to the Utter iWV<Jcrit ^ Rc0*75 wlth 8,ini* 
mum  suction]. 

In the region of the reer pressure rise of a rvept low drag suction 
ving where the boundary layer crossflow is aost pronounced» one night expect tran- 
sition In the presence of sound to be caused by aaplified boundary layer oscil- 
lations traveling in crossflow direction. The experiaents, however, rarely showed 
transition in the region of the rear pressure rise except in the case of aarginal 
suction when transition would already have occurred without external sound. This 
result can probably be explained by the fact that the Mxiaua crossflow velocity 
increases rapidly toward the wing trailing edge. For a disturbance wave travel- 
ing in crossflow direction with a given wave velocity cr the ratio of this wave 
velocity to the local ■axieu» croeaflow velocity then decreases considerably 
toward the wing trailing edge. Under such conditions, in the neutral stability 
diagran of the boundary layer crossflow, disturbances are strongly aaplified 
only during a short tiae over a Mall chordwiae extent in the region of the rear 
pressure rise. In the reaaining part of the area of the rear pressure rise the 
ratio of wave velocity to aaxiaua crossflow velocity (for a given sound frequency 
and a constant wave velocity) la either too high or too low to cause a strong 
amplification of oscillations in the crossflow boundary layer. In addition, with 
the strong suction required in the rear pressure rise of the swept wing aodel to 
prevent crossflow instability, the chordvise coaponent of the boundary layer is 
highly stable against chordwise disturbances. Chordwlse boundary layer oscilla- 
tions and the coaponent in crossflow direction then never grow to large aaplitudes, 
and the reduction of the crossflow stability Halt Reynolds nuaber by the non- 
linear terns in the disturbance equations is then auch less in the region of the 
rear pressure rise, as coapared with the area of the flat preasur« distribution. 
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CHAPTER D. LAMINARIZATIOW OF A SEARS-HAACK BOOT OF REVOLUTION BY MEANS OF 
BOUNDARY LAYER SUCTION 

a. INVESTIGATION OF A LAMINAR SUCTION MODIFIED SEARS-HAACK BODY 
OF REVOLUTION IN THE NORAIR 7- BY IQ-FOOT WIND TUNNEL 

L. W. Gross 

(A) Suacmry 

Full length laminar flow with very low friction and equivalent 
total drags was maintained on a 9-to-l fineness ratio laminar suction modified 
Sears-Haack body of revolution of 142-inch length up to a length Reynolds 
number % * 20.1 x 10^ by means of suction through 120 fine slots* The coef- 
ficient of equivalent total drag (based on wetted area and including the 
equivalent suction drag) at an angle of attack a » 0° was 1.18 times the 
laminar flat plate friction coefficient up to R^ » 19.6 x 106 with a corre- 
sponding suction quantity coefficient (based on wetted area) CQ « 1,75 x 10* . 

At an angle of attack or « 2° the minimum equivalent total drag 
coefficient varied from 1.18 tiroes the laminar flat plate friction coefficient 
Cf at a Reynolds number RL « 6,3 x 106 up to 1,45 Cf at RL • 16,19 x 10

6, An 
equivalent total drag coefficient Cj3t  • 4.8 x 10** was measured at 

RL ■ 16,19 x ID6 requiring a total suction quantity coefficient CQt ■ 1,95 x 10***. 
Full length laminar flow at » = 2° was observed up to a length Reynolds number 
RL » 18,55 x 10

6, 

(B) Notation 

en («P)   local drag contribution of boundary layer momentum 
thickness at a given radial angle <P 

CD      - -ÜL; coefficient of drag, based on body wetted area S 
q^s 

CDS     ■   ^  CQa^ * ^ä ^'  coe^icient 0f dra8 due to suction 
all a  power required to accelerate the 

chambers suction air to undisturbed velocity 
and pressure without losses 

cDt     " CDS 
+ CDW» coefficient of equivalent total drag 

Cöt     minimum equivalent total drag coefficient 

2n 

Coy     « f cDw(o)dcpj coefficient of wake drag 

o 

Cf      laminar flat plate friction coefficient 
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(B) Notation (Contlwued) 

K  ——I pressure coefficient with respect to ambient 
^*   static pressure p_ 

Pa " P« 
Cp      *  ' ■; pressure coefficient of individual suction 

a        lae   chamber with respect tc ambient static pres- 
sure p 

Q_ 
On      => J3L.;  suction coefficient of individual suction chamber 

""' s based on body wetted area S 

CQ^     *   T.     Cqai  total suction coefficient 
all 

chambers 

Cn      optimum total suction coefficient corresponding to minimum 
equivalent total drag 

D       drag (lb) 

6* 
H       « ■«•.; boundary layer shape parameter 

H       average boundary layer shape parameter between the value at 
the rearmost station of the model and the value at infinity 

flj.g     boundary layer shape parameter at the rearmost station of 
the model 

L       model length to the rearmost statioa of the model (ft) 

L'       length of basic model before addition of sting (ft) 

2 
p       static pressure (lb/ft ) 

pa      static pressure in st:tion chamber (lb/ft ) 

p       freestream undisturbed static pressure (lb/ft ) 

1     •> 2 
q^      " "5 P U I freestream undisturbed dynamic pressure (lb/ft ) 

3 
QQ      suction quantity of each suction chamber (ft /sec) 

r       body radius at axial station x 

r,j._     body radius at rearmost station of the model = 3.132 in. 

U L 
RL      » -H-j Reynolds number based on model length 
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(B)    Motttton (Contiaued) 

R.(0«) 

s 

u 

u 

u TE 

If 

v * o 

« Hi.} E,«5molds nussber based on boundary layer «»enttira 
thickness 

Reynolds ntesber based on boundary layer moraentuia thickness 
taeasured by top rak« 

Reynolds     aaber based on boundary layer iHomentum thickness 
taeasured by side rake 

2 
wetted surface area of model * 35#44 ft 

velocity tn the boundary layer at height y (ft/tec) 

velocity at outer edge of boundary layer (ft/sec) 

potential flow velocity at the rearmost station of the 
model (ft/sec) 

undisturbed freestream velocity (£t/sec) 

suction velocity for equivalent area suction (ft/sec) 

v. 
rp- /RLJ nondiroensional suction velocity for equivalent 

area suction 

y 

or 

6 

6* 

TE 

distance along axis of model (ft) 

distance normal to the surface of the model (ft) 

angle of attack (degrees) 

boundary layer thickness 
6 

« (1 - H) (I -J-1)} boundary layer displacement thickness (ft) 
J    U     r ' 
o 

boundary layer displacement thickness at the rearmost station 
of the model (ft) 

6 

H (I - H) (1 + l)dy; boundary layer momentum thickness (ft) 
U    U     r 

9TE boundary layer momentum thickness at the rearmost station of 
the model (ft) 

wake momentum thickness far behind the model (ft) 
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CB)    Wotaticm (Contlniiedl) 
2 

* absoisit« viscosity (Ib-sec/ft ) 

v • ü; kiri«iRatic viscosity (ft /sec) 
o 

2      4 
p dtnsity (lb-sec /ft ) 

0       radian angle (degrees) 

(C) latrodtiction 

In connection with the application of low-drag laminar boundary 
layer control to airpla-es, the question arises as to the feasibility of main- 
taining extended region of laminar flov on coaponents that are essentially 
bodies of revolution (such as the fuselage and engine nacelles). Specifically, 
the ability of suction to stsbili«e the laminar boundary layer on bodies of 
revolution up to very high Reynolds numbers should be dößionstrated. In addi- 
tion, it is desirable to establish data froni which the limits of the parameters 
significant to laminar boundary layer stability on a body can he deduced for 
design perpoies« 

investigation of natural boundary layer transition on bodies of 
revolutlen deference 92} has shown that boundary layer stability is affected 
by thö ttiree-disenslonal nature of bodiee» Iftien the body radius is increasing, 
the bcaindsry layer woaentu« thickness Reyjiolds number R^ at transition is lower 
than tltttt of mi  «jqulvalent tws->-dia€nsioital surface; i.e., the stability limit 
is decreÄsed. In like «tnner, the stability ii:nit is increased above that of 
the equivalent two dlaensional surface whan the body radius is decreasing. It 
appears that the boundary layer in the front part of a body is less stable than 
on a wing due to the stretching of disturbance vortices in the region of 
increasing body radius and due to fluctuations of the front stagnation point 
(Reference 93). 

Low dr&g boundary layer suction was applied to an ellipsoid of 
revolution of fineness ratio 9tl  and tested In the Norair 8- by U-foot wind 
tunnel and in the University of Hichigan 5- by 7-foot wind tunnel (Reference 
94 ). Ute isodel was of 142-inch length and had nineteen suction slots arranged 
from 10.5 percent to 96 percent length. Slot widths varied from 0,004 to 
0,014 inch. As reported in Reference 94, the mlnirauta equivalent total drag 
coefficient based on wetted area (Including equivalent drag due to suction) 
was 1,24 tiaies the laminar flat plate friction coefficient up to a length 
Reynolds nunber Rj * 12 x  10fc and full length laminar flow was maintained 
with slightly higher values of minimum total drag up to a  length Reynolds 
number % » 15 x 10c. 

On the basis of these experiments and «Kperlance with other low 
drag suction models at high Reynolds numbers, a laminar suction body of revo- 
lution was designed fov tests at high length Reynolds numbers (deeign length 
Reynolds number ki  « ^  K 10^ for test conditions similar to the Ames 12 foot 
pressure tunnel at a unit Reynold: number ü^/w - 4,15 x IC6 per foot). In 
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(C) Introduction (Continued) 

order to gain experience with the cdel and to establish experimental data 
at the lower «ad of the anticipated Reynolds masber range, the model was 
first tested in the N'orair 7- by 10-foot wind tunnel. This report describes 
these investigations« 

(D) Experimental Setup 

The body shape chosen was » 9:1 fineness ratio Sears-Haack body 
modified to have a rounded nose of sisal radius of curvature (Figure 160). 
This shape was chosen on the ba*is of the investigation of Reference 33 and 
gives as large an extent of natural laminar flow as possible while regaining 
adequate internal volume. The length of the Norair model was limited to 
approximately 156 inches by the available lathe. It was desired to retain a 
9:1 fineness ratio and after allowing for an adequate mounting length of the 
sting the basic body length became L' « 139.5 Inches giving a oaxlmum diameter 
of 15.5 Inches. The model was mounted on a sting of 6,5-inch diameter which 
provided space for the suction air. The body shape was faired smoothly Into 
the sting from B5  to 103 percent of the body length. The final contour is 
illustrated in figure 160. 

For the design of the suction system» the boundary layer develop- 
ment along the body was calculated (Figure 166) by means of Raet«*s method 
(Reference 43), using the theoretical suction distribution shown In Figure 166 
The potential flow pressure distribution used for the design calculations was 
taken from Reference 92 and  i«; shown in Figure 165. 

Figure *60 shows the model and details of the suction system. 
The pcsition of the first slot was selected on the basis of the investigation 
of natural transition on the body by Groth (Reference 92). The spacing of the 
0.003 incii slots was determined from the theoretical boundary layer develop- 
ment (Figure 166) to be cwo inches in the region from 4.84 to 75 percent of 
the basic body length L' and one-half fnch In the region of the rear pressure 
rise, from 75 percent to 100,4 percent for a total of 120 slots. 

The slot width was chosen apprcKimately equal to the thickness 
of the sucked layer at a design length Reynolds number of 49 x 10^,* Con- 
siderable attention was given to avoiding any local flow separation in the 
suction slots and holes underneath the slots by restricting the flow Reynolds 
numbers in these slots and holes to sufficiently low values. 

The model was built up of an inner shell composed of eight 
machined tubes bolted together, a nose piece, and outer rings shrunk-fit to 
the inner shell.  Suction air passage through the inner shell was provided by 
drilled holes ^hich also acted as metering holes to compensate for variations 
of the external pressure ''leid. Details of the slot and hole system are given 
in Table  IX , Suction plenum ch^/Dbers were turned into the outer rings. Dur- 
ing assembly, the outer rings were forced together as they were shrunk-fit onto 
the inner shell and the slots were subsequently turned into the joint between 

*Assuming teat: conditims similar to those in the Ames 12-fcot pressure tunnel, 
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(D) Eiq^erlacptal S«tup (Continued) 

the ringt to provide positive control of the slot width. Coopartnentetion 
of the «adel into thirteen suction chambers was accomplished by means of 
sealed bulkheads* Calibrated suction flow measuring nossles were mounted 
on the face of tht-  bulkheads. 

The Horair 7- by  10-foot wind tunnel and its auxiliary air 
supply arc described in Appendix B of Reference 14. Figures 162 and 163 
show the model mounted in the wind tunnel test section and a schematic draw- 
ing of the installation is given as Figure 161. The model was held In a tube 
which was» in turn, supported from the test section floor by two columns, the 
rearward of which was adjustable in length so that the model could be pitched 
through an angle of attack range of 4", The support system vas faired with 
sheet metal and wooden blocks so as to minimise flow disturbances. 

The suction air was drawn from the boundary layer on the sur- 
face of the model, through the slots, plenum chambers and holes and into the 
thirteen independent suction chambers. The suction air was then ducted from 
each suction chamber, by means of aluminum tubing, to the exterior of the 
model by tray of the sting. Flexible tubing led the air through the model 
support structure and to a coamen suction box. The suction quantities of the 
various chambers could be adjusted individually bv means of remotely controlled 
needle valves at the entrance to the common suction box. The total rate of 
suction could be varied by introducing bleed air into the suction box. The 
suction air was then drawn from the suction box by the wind tunnel auxiliary 
air exhaust system described in Appendix B of Reference 14. 

(E) Measurements and Evaluation 

The objective of this investigation was the study of the behavior 
of the laminar boundary layer on a body of revolution with suction through many 
fine slots and the determination of the drag characteristics and suction 
requirements of this body at various angles of attack a and Reynolds numbers 
R;(. At each of the various Reynolds numbers and angles of attack, the suction 
quantities were varied over a range that included the point of minimum drag. 

The coordinate system is shown In Figure 164. The following 
measurements were taken. 

The pressure drop across the calibrated flow measuring nozzles 
located at the downstream end of the various suction chambers was measured to 
evaluate the suction quantities Qa of the various suction chambers. The cor- 
responding chamber static pressures were taken at the downstream end of the 

suction chambers. The lengthwise pressure distribution was recorded by means 
of twenty-two static pressure orifices located from 1 ro 100 percent of the 
basic body length L". The locations of the static pressure orifices are given 
in Table  X , In order to properly set the model at an angle of attack 
3*0°, four pressure taps arranged 90 degrees from each other were provided 
at a position 5 percent of the basic body length L' from the nose. 
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(E) Measurements and Evaluation (Continued) 

The boundary layer profiles at the rear end of the model were 
measured by means of two boundary layer rakes located on the top and side of 
the sting. The measuring plane of the ?akes was a length L = 142 inches from 
the nose so the Reynolds number RL and other performance characteristics of 
the model were based on this length (as opposed to the basic body length 
L'■ 139.5 inches). The top boundary layer rake consisted of fourteen and the 
side rake of twelve flattened total pressure tubes. Each of the rakes had two 
static pressure tubes displaced one-half inch from the plane of the total pres- 
sure tubes* 

The state of the boundary layer was observed from the boundary 
layer velocity profile measurements at the rear end of the body and from the 
response of 9 microphones conner .ed to surface static pressure orificej. along 
the length of the body. 

The static pressures in the measuring nozzles, suction chambers 
and on the external body surface were displayed on a first U-tube manometer 
panel. The boundary layer rake readings (total end  static pressures'»   3 
recorded on a second, separate U-tube manometer board. In this mann«, fluctua- 
tions of the total pressure readings from the rakes did not influence the 
remaining pressure readings. The pressure data were recorded photographically 
on 70 mm microfile film, which was ther. read on a film read''  mach in'.  Ihe 
recording was done on punched cards suitable for use on an .   7090 digital 
computer. 

The freestream undisturbed static and dynamic pr*>'-ure p and 
q were determined from calculations of the tunnel wall correc.J ns given by 
Lock and presented in Reference 93 and from the wind tunnel ca bra..ion curves 
given in Appendix B of Reference 1^ .  The resultant minimum pressure ceffi- 
cients showed a scctter of 0.4 percent of freestream dynamic pressure. 

From th'3 measured suction quantities Qa in the various suction 

Qa 
chambers, the suction quantity coefficients Cn =  — of the Individual M va   U S 

•30 

chambers and the total suction quantity coefficient CQ -   -  CQ were 
all 

chambers 
p  - p 

evaluated,  With the non-diinens-fonal coefficient Cn0 = —-— of the pressure 

rise across a suction compressor necessary to accelerate the suction air isen- 
tropically to freestream velocity and ambient static pressure, the equivalent 
suction drag coefficient is: 

CDS *   -  Cna (1 - Cp ) 
S    all Ba 

chambers 
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(E) Measurements and Evaluation (Continued) 

Due to the surface curvature of the body at the rake location, 
a pressure gradient normal to the body was present. This pressure gradient 
was measured by the two static pressure probes mounted on each rake. A linear 
variation of static pressure was assumed for the determination of the velocity 
distribution in the boundary layer at the rake location. 

For the evaluation of the wake drag it was assumed that the 
measured boundary layer profile is first accelerated over a short distance to 
a constant static pressure equal to the value at the edge of the boundary layer 
at the rake location. This new fictitious boundary layer profile at constant 
static pressure can be determined from the continuity equation and the Bernoulli 
equation (i.e., assuming constant total pressure along streamlines). The wake 
momentum loss at infinity, which determine» the wake drag, can be evaluated 
from the momentum thickness of this fictitious boundary layer at constant static 
pressure according to Squire and Young: 

2 rfl_Ä" + 2 f iiZL!l£ 
CDW-I    ir3^= (—) dc 

where r„„ is the body radius at the measuring station, U  is the potential flow 
- TE       6* 

velocity at the edge of the boundary layer, H is the value of H = (-5-) in the 

wake between the rearmost station and infinity and 

5 

o 

6 

HjE =1.4 shortly downstream of the rear end of the model and H = 1,0 at 

infinity} therefore H + 2 « 3.2, and 

UTE 3.2 r 2rTP 9 T£ TE 6T 
^ ■ (ur) 

For the determination of the total wake drag the momentum thick- 
ness as measured by each boundary layer rake was determined and a local wake 
drag en (c) at the radial angle of the rake was defined as 

U  3.2  2r  9 
:IV(T) » (J£)   x -JLE-Ifi 
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(E) Meastareaents and Evaiuatlcm (Contliwitd) 

AC an angle of attack or = 0° it was asstmtd that tl« elrctnfcrential 
distribution of the partial drag was sinusoidal so that 

%*^* 2  

where the subscripts t and s refer to the top and side rakes respectively. This 
assumes that the boundary layer diametrically opposite a given rake would he the 
sane as the boundary layer at the rake. At an angle of attack this procedure Is 
incorrect and must be modified as follows. The nose of the model was elevated to 
the proper angle, the test conditions were established ami data were taken over a 
range of total suction quantity. After stopping the wind tunnel the nose of the 
model was depressed to the negative value of the chosen angle and the previous 
test conditions were re-established. For the determination of the total wake 
drag coefficient a sinusoidal distribution of the partial drag measured at plus 
and minus a was assumed at a given total suction quantity. Thus 

The total equivalent drag is then the sum of the wake and equiva- 
leng suction drags: 

CDf: = CDw ■f CDS 

(F) Experiroental Results 

The pressure distributions measured at angles of attack cr « 0 and 
2° are shown in Figure 167, The given pressure distributions for an angle of 
attack o- = 2C are those of the upper and lower meridians only. 

Figures 168 through IK) show representative local wake drag coef- 
ficients c|^(o) (defined in (E) above) at an angle of attack or « 0° as calculated 

from the measurements of the boundary layer rakes at the aft end of the model. 
The total wake drag coefficients Cj^ resulting from the integration of the local 
wake drag coefficients CD^C") of the chosen samples are shown in Figures 171 

through 173, along with the equivalent suction drag Cn and the equivalent total 

drag coefficient CDt, as a function of suction flow coefficient CQt. 

According to Figures 168 through 170 the local drag measured by 
the top rakt 0^(0°) was consl tently higher than that of the side rake 0^(90°). 

In the analytical section of this report Bossel's calculations show good agree- 
ment between the theoretical boundary layer velocity profile at the measuring 
station and the profile measured by the side rake» Therefore» it appears 
reasonable to include a study of the drag assuming that only the measurements 
of the side rake were valid. The r,?I:e drag was defined as CQ^ - 2n CDW(90

O
) and 
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(F) feeggtltatal »Miilt» CCe«timi«d) 

»«npl«» at« shmm m a funetion of to'iml  suctloa coefficient CQ In Figures i74 

thro^ 17*. Also laeladed Is Figures 174 through 17& are the equivalent 
suction drags Cj^ and el* equivalent total drag coefficient % that results 

fro» this definition of CJJ^, 

Sepreaentative local «ake drags raeasured at an angle of attack 
o • 2* are shmm  la figures 177 thro^ogh 179« For slxiplicity of presentation, 
it was aasusied that the seasureatents at er * *2* vere the equivalent of measure« 
Mmts of tu« jMitiotm"  rakes (located at the hotten and side of the model) at 
ö « 4t** Therefore, in Figures 177 through 179 the notation €^(180°) is intro- 

duced to identify the local drag »aasored by the top rake at cr « .2°. 

The total wake drag coefficients Cn at an angle of attack a s 2« 

are shown in Figures l*K> through 132 as a function of total suction flow coeffi- 
cient Cfu« The gase figures incluae the equivalent suction drag coefficients 

C0 and the equivalent total drag coefficient Cp£. 

Figures 183 and 184 show the variation of the mininnon equivalent 
drag coefficient Cjv   and the corresfonding optloum suction quantity coefficient 

%in 
at ainijaura equivalent total drag CQ  with length Reynolds number RL at an 

angle of attack & « 0** Figure 183 shows the results when the wake drag was 
|*    taken as the average of the partial drag« of both top and side rakes and 
W    Figure 164 shows the effect of determining the wake drag from the partial drag 

of the side rake alone* C$t       and CQ   ,   as functions of Rt for o = 2° are 
•rain     <opc 

shown in Figure 185 . 

The lengthwise distributions of the nondimensional equivalent 
area suction velocity v0* as evaluated for several test runs at angle of 

attack 0' » 0° are shown in Figure 186, These suction velocity distributions 
correspond to the test points that gave the lowest values of Cß during each 

test run and are compared to the design suction velocity distribution taken 
from Figure 166« The boundary layer velocity profiles that correspond to the 
experimental suction velocity distributions of Figure 186 are shown in Figures 
187a and 187b. 

The variation of the boundary layer velocity profiles, as meas- 
ured by the boundary layer rakes, with total surtion coefficient CQ are 

shown in Figures 188a through I90b, Figures 188a, 189s and 190a show the 
velocity profiles measured by the top rake whereas Figures 188b, 189b and 
190b show those measured by the side rake, 

(G) piscusslon 

At an angle of attack a « 0° full length laminar flow was main- 
tained on the modified Sears-Haack low drag suction body of revolution to a 
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^ Discussion (Continued) 

length Reynolds ntaaber RL « 20.1 x 10 (see Figure 1S4). thm «iniwM equiva- 
lent total drag coefficient (based on wetted area ami including equivalent 
suction drag) at or » O* and RT • 19.6 x 10*> was C^       « 3.6 x 10-^ and the 

Hain 
corresponding total suction coefficient was CQ       * 1,75 X 10    *    At length 

Reynolds number below R^ « 19.6 x 10^ the ntininuai equivalent total drag was 
approximately 1.18 tiaes the friction drag of a laralnar flat plate. 

The above results were based on the wake drag as detemined fross 
the boundary layer measurements of the side rake alone« If the boundary layer 
measurements of both top and side rakes are used to determine the wake dragt then 
the level of the minimum equivalent total drag coefficient is raised to 1.34 times 
the laminar flat plate friction coefficient (Figure 183). Since the boundary 
layer profiles measured by the top rake are consistently thicker than those of 
the side rake it is felt that, although the nose of the model was known to be 
aligned with the wind tunnel airflow, the rear end of the model was at a slight 
angle of attack such that the  airflow was from the bottoe of the model toward 
the top. This induced angls of attack might have been due to slightly asyraaetrlc 
flow in the wind tunnel or the asymmetry of the mounting system. If the increased 
partial drag of the top rake was due to the rear of the model being at a slight 
angle of attack then it is reasonable to assume that the boundary layer over the 
lower portion of the model would be thinner and thus give a lower drag, the 
lower drag over the underside of the modelwould tend to compensate for the in- 
creased drag of the upper portion and thus the overall drag would approach the 
results given by the side rake alone. 

The lowest equivalent total drag coefficient measured at an angle 
of attack a « 2° was Cn,.   « 4,8 x 10-4 at a Reynolds number 

"rain 
RL "  16.19 x 106 (Figure 185). The total suction quantity at minimum equiva- 
lent total drag was CQ » 1.95 x 10"^. This equivalent total drag is 1.44 

times the laminar flat plate friction drag. At lower Reynolds numbers the 
ratio of the equivalent total drag to the friction drag of a laminar flat 
plate decreased. At a Reynolds number R^ « 6,3 x 10^ the minimum equivalent 

total drag was 1,18 times the laminar flat plate friction coefficient. At 
this Reynolds number the actual minimum equivalent total drag coefficient 

CD»- J    = 6,25 x 10  occurred at a total suction coefficient Cn « 1,24 x 10 . 
"■min vt 
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(A) 

Th» tmtdmt bounditrjF i*y«>r dwml&fment In incooprecsible 
flow over a modlHmä Sears-Baack low drag net „on body of revolution of 
142*inch length «as cooputad % wsana of Saetx^s aMithod (Reference 45)* 
11M» theoretical data obtained are coapared with experimental data for 
eight test points at length layoolds nuabers fro« §.3 to 19,6 x 10 , 

Hie theoretical data ere in satisfactory agreeoent with the 
expariaental data although ttwy are not exactly cooparable, since pure 
axiay—utric flow was not achieved during the experiaents. 

(B) notation 

r   nondinensional body radius * t/V 

x   » x/L* * nondiaensional distance aloi^g body axis 

z       « iz/D^K.    « nondiaensional distance normal to surface 

6       « (i/DyftT * nomliaensional boundary layer thickness 
(u/0 » 0.999) 

5*  « (6*/L)^R. « nondiaensional boundary layer displacement 
thickness 

8   « (Ö/D^IU ■ nondimensional boundary layer momentum 
thickness 

Bars denote ncndlmensional quantities. All other symbols are 
defined in the notation given in Chapter D-a. 

(C) Introduction 

This report is concerned with the coiaputation of the boundary 
layer development along a modified Sears-Haack suction body of revolution 
in axisymmetric incompressible flow and comparison with test results. 

The Sears-Haack low drag suction body was designed for opera- 
tion at very low turbulence levels at length Reynolds numbers up to 49 x 10 . 
Area suction was closely approached by means of suction through 120 fine 
slots. The model was tested in the Norair low turbulence 7- by 10-foot wind 
tunnel at Reynolds numbers between 6 and 20 x 10° (see Section II, Part 1, 
Chapter D-a). About 400 test runs were obtained, of which eight are analyzed 
in this report. Data for these eight runs are given in Tables XI through 
XIV . The shape of the body aud its velocity distribution are shown in 
Figure 191. This velocity distribution was obtained by averaging the pres- 
sure readings for run numbers 41, 46, 52, 66, 76 and 78. 
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CO Introduction (Continued) 

During the wind tunnel tests, the neasured velocity distribution 
in the boundary layer at the end of the »©del (at a station 142 inches from the 
nose of the aiodel) was not uniform along the circumference of the model. The 
boundary layer measured at the side of the model was thinner than that at the 
top. The shape of the top rake velocity profile indicated transitional flow 
in most cases. Increased suction tended to bring both rake readings to closer 

f agreement. 
is 

| the boundary layer development along the body was computed for 
I incompressible flow by means of Haett's method (Reference 45) on a high speed 
| electronic IBM 70%) computer. Area suction was assumed for the calculation. 
| The experimental suction distributions were approximated by analytical expres- 
I slons« Figure 192 shows an example of this approximation for run number 66. 
i The resulting differences in the total suction flow coefficients are tabulated 
| in Table XIV. 

:# 

I        (®*    Results 

I (I) Boundary Layer Development 

I The computed boundary layer development for each of the 
eight test runs is given in Figures 193 through 200, Momentum thickness 

I Reynolds number Rg • U9/u, nondisensional mamentum thickness 6 ■ (e/L) /\t 

I nondimensional displacement thickness 6* ■ (6*/L) /RL, end shape parameter 
i —. 
I H = 6*70 are plotted vs x a x/L», The eindimensional suction inflow velocity* 
f v0* is added to the figures to show the effect of varying suction. 

I (2) Velocity Distribution in the Boundary Layer at the Rqke 
I Position 

The computed nondimensional velocity distribution in the 
boundary layer at the position of the rakes(x « 1,0179) is plotted in Figures 
201 through208 . Experimental points from the side and top rakes are added 

| fcr comparison. The nondimensional height z  above the surface may be converted 
| to the actual height z  (in.) by using the relation 

z s _£L (in.); where L » 142 inches. 

The following table gives the conversion factors* 

Run Number    41     46     52     66     76     78     397    421 

L//RL     ,0565  .0564  .0480  .0386  .0370  .03705  .0342  .0321 

The computed velocity profiles are compared in Figure 209 
with the experimental data. The profile for run number 421 lies between 
those for run numbers 41, 66, and 397. It has been omitted for the sake of 
clarity. 

# 

*For equivalent area suction. 
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(D) Results (Continued) 

(3) Characteristic Values at the Rake Position 

In Figures 210 through 212 the computed and experimental 

values of the displacement thickness T*t  the momentum thickness 3$ and the 
shape parameter H are plotted as functions of the total suction flow coeffi- 
cient CQ . 

The effect of suction on the boundary layer Reynolds number 

can be compared by plotting RQ/^RL VS ^Qt (F^8ure 213)« Since the momentum 

thickness Reynolds mnüher Rg is proportional to the dimenslonless momentum 

thickness times the square root of the length Reynolds number, RQ//RL is con- 

stant for equal nondimensional suction distributions v0* (x). 

The influence of suction on the wake drag coefficient Cj^ 

can be «een fro« Figure 214, where C^ /RL has been plotted vs CQt. Since 

CQ Is proportional to QZ/RL» C0IU </^L 
mxat  be constant for constant 0. 

A summary of the experimental and computed data for the 
eight points is given In Table XIII. 

(E) Discussion 

(I) Boundary Layer Development 

The laminar boundary layer thickness on a body of revolu- 
tion is influenced mainly by two things: 

(a) it cends to become thicker with /x; 

(b) as the body diameter changes with x, the boundary 
layer Is expanded and contracted accordingly.  Its 
thickness thus tends to change inversely proprrtional 
to r. 

We thus have 

6 ~— (laminar region). 
r 

This causes the boundary layer to grow in thickness more 
slowly in regions of increasing r compared to the two-dimensional case and to 
grow faster In regions of decreasing r. The overall effect is sketched below 
'assuming laminar flow, which cannot be maintained much beyond maximum thick- 
ness without suction at higher Reynolds numbers). 
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(1) Boundary Layer Development (continued) 

Body of Revolution 

Flat Plate 

/ 
y 

L 
Body of Revolution 

Contour 

This general tendency is shown in Figures 193 through 200 
for the displacement and raoraentum thicknesses Ö* and 9 and the momentun thick- 
ness Reynolds number Rg. 

Increasing suction decreases the boundary layer displacement 

and momentum thicknesses ^* and 9, the boundary layer momentum thickness Reynolds 
number R^, and the boundary layer shape parameter H. This effect is especially 
pronounced for the cases of strong suction (runs A6 and 78). 

The nondimensional boundary layer thickness 6 is proportional 
to the square root of the length Reynolds number R^. Displacement and momentum 

thicknesses 6* and  and momentum thickness Reynolds number Rg are therefore 
higher for higher length Reynolds numbers. 

Forward suction must be Increased with higher length Reynolds 
numbers since the stability limit Reynolds number is reached farther forward. 
This may be seen from Figure 215 where the "center of gravity" coordinate x 

e.g. 
of the suction inflow velocity distribution (v *) has been plotted vs RL. 

The v_"  coordinate has also been plotted.  It is dependent upon the total suc- 0c.8 

tion flow coefficient Cnt and upon the form cf the inflow velocity distribution. 

The lower values for runs 421 and 397 may explain the highly transitional flow 
for these two runs at the top rake position. 

(2) The Boundary Layer at the Rake Position 

Stronger suction causes fuller velocity profiles. This can 
be seen from Figures 2)1 through 208 , and from Figure 209 , where seven boundary 
layer velocity profiles are compared. The profiles for weak suction 

(CQ,. ^ 1.8 to 2 x 10" ) closely resemble each other. The dimenslonless total 

boundary layer thickness 6 lies around z = 8 to 9. 

The test points for the top and side rakes (Figures 200 
through 208 ) are not in agreement, indicating that the flow around the test 
body was not axisymmetric. The computed velocities lie between the two extremes, 
agreeing better with the points measured at the side rake.  This agreement is 
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(2) The Boundary Layer at the Rake Position (Continued) 

e\en better in the case of increased suction (e.g., run numbers 46 and 78). 
The top rake test points for all runs except 46 and 78 indicate transitional 
flow. 

Inspection of Figures 210 through 214 shows a dependence of 

"*» 9, H, Kg and CQ^ on the total suction flow coefficient CQt. The computed 

points ior ?t AQZ/AL 
lllldcn|, Al  figures 211, 213 and 214) agree fairly weil itith 

the test results for the side rake while the agreement for ?* and H and the top 
rake points is less satisfactory. 

The plots for S", C^ /RL and R9//RL vs CQ i>re similar since 

$ - CD,, /RL ~ ReZ/RL . 

Coraput&d points and side rake points .ire in relatively close 
agreement for these values (Figures 211, 213 and 214), while the top rake points 
are higher. The points representing top rake measurements for run numbers 41, 

52, 66, 397, and 421 are not in consistent relationship to those for run numbers 
46, 76, and 78, which are cases of stronger suction. Inspection of Figures 2ol 
through 208 indicate« transitional flow for run numbers 41, 52, 66, 397 and 421. 

The fuller the velocity profile, the smaller is the displace- 
ment thickness 

L  J 
zsO 

U' 

The computed displacement thicknesses on Figure 210 are 
between those for the top and side rakes. The agreement for the cases of 
higher suction (46 and 78) is much better than for those of lower suction. 

The computed shape parameters H (Figure 212) are higher 
than those for the side and top rakes. They show an almost linear dependence 
on CQ , while the test points are more scattered. 

The shape parameters measured at the top and side rakes are 
smaller than those computed. The reasons are: 

(a) for the side rake 7* is smaller than computed, while 

9 Is about the samej 

(b) for the top rake 3* is higher, but ^ is also much 
higher, with the overall result of a lower H. 

-170- 



(F) Conclusion 

The laminar boundary layer development along a 142-inch long 
modified Sears-Haack body of revolution was computed and compared with 
test results for Reynolds numbers from 6.3 to 19.6 x 10 (see Section II, 
Part 1, Chapter D-a). 

Six cases of minimum suction (C, = 1,75 to 2.02 x Jj" ) 

and two cases of higher suction (CQ - 2.66 and 3.68 x 10" ) were considered. 

Area suction was assumed and approximated analytically. The resulting 
average difference of the total inflow coefficient CQ was 0,59 percent, 
with a maximum deviation of 1.54 percent. *- 

The computations showed the computed values to lie between 
those measured at the top and the side rakes. The differences must be 
attributed to asymmetric flow during the experiments. 

Tho measured displacement thickness 6* at the side rake (top 
rake) was 68 to 88 percent (109 to 140 percent) of the computed value, 
while measured momentum thickness 9 and wake drag coefficient Cn at the uv 
side rake (top rake) were 89 to 102 percent (135 and 179 percent) of the 
computed values.  The computed wake drag coefficients CD ranged from 
0.000179 to 0.000386. w 
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TABLE I 

30° SWEPT WING MODEL 

AIRFOIL COORDINATE PERPENDICULAR TO LEADING EDGE 

Chord in perpendicular direction C1 « 72.96 in. 
Leading edge radius RQ/C' * '817' 

Ordinate 
Y 

% C* 

0 0 
.5462 ± .9745 
.8224 ±1.1636 

1.2335 ±1.3939 
2.4671 ±1.9312 
5.2786 ±2.8506 
7.7713 ±3.4768 

10.2641 ±^.0072 
15.2494 ±4.8607 
20.2347 ±5.5129 
25.2200 46.0163 
30.2054 ±6.3962 
35.1907 ±5,6664 
40.1760 ±6.8319 
^5.1613 ±6.8917 
50.1467 +6.8508 
55,1320 ±6.6973 
60.1173 ±6.3992 
65.1026 ±5.8588 
70,0881 ±5.1269 
75.0734 ±4.2694 
80.0587 t3.3661 
85.0440 -"^.4605 
90.0294 ±1.5404 
95.0147 ± .6880 

100 0 
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* POSITION OP 

TABLE II 

SLOTS AND CHAMBERS. SLOT WIDTHS 

I SLOT 
NO. 

SLOT 
WIDTH 
INCHES 

SLOT 
POS mew 

X PROJECTED 
CHORD 

CHAMBER 
NO. 

SLOT 
NO. 

SLOT 
WIDTH 
INCHES 

SLOT 
POSITON CHAMBER 

* 

% PROJECTED 
CHORD 

NO. 

101    0.004      0.52 101 30   0.005     66.29       ! i 
102 2.07 102 31 66.84 
103 4.97 103 32 67,39 i 
104 8.92 104 33 67.94        6 ) 
105 12.96 105 34 68.48 
106 16.98 IDS 35 69.03 
107 20.50 106 36 69.58 
1 25.00 1   i 37 70.13 
2 29.85 1 J8 70.68 
3 33.31 2 39 71.23 
4 36.16 40 71.77 
5 38.54 41 72.32        6 
6 40.60 2 42 72.87        1 
7 42.49 3 43 73.42 
3 44.31 44 73.97 
9 45.99 45 74.52 

10 47.57 46 75.06 
11 49.04 47 75.61 
12 50.41 48 76.16 
13 51.75 3   i 49 76.71 
14 53.02 i 50 77.26        / 
15 54.20 51 77.81        t 
16 55.34 52 78.36 
17 56.39 53 78,90 
18 57.43 54 79.45 
19 58.46 55 80.00 
20 59.46 56 80.55 
21 60.45 57 81.10 
22 61.41 58 81.65 
23    O.C 04     62.33 4 59 82.19        { 
24    0.0 05     63.00 5 60 82.74        c ) 
23 63.55 61 83.29 
26 64.10 62 83.84 
27 64.65 63 84.39 
28 65.19 64 84.94 
29    O.C 05     65.74 i 65    0.0 05     85.48        < 

X 
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TABLE II (Continued) 

POSITION OF SLOTS AND CHAMBERS, SLOT WIDTHS 

SLOT SLOT 
SLOT WIDTH 

INCHES 
POSITON CHAMBER 

NO. % PROJECTED NO. 
CHORD 

66 0.005 86 ,03 f 67 36 .58 
68 87 .13 9 
69 87 .68 10 
70 88 .23 
71 88 .77 
72 89 .32 
73 89 ,87 
74 90 .42 
75 90 ,97 
76 91 .52 
77 92 ,07 10 
78 92. ,61 11 
/9 93. ,16 
80 93. ,71 
81 94. 26 
82 94. 81 
83 95. 36 
84 95. 90 
85 96. 45 
86 0.0( 35 97. 00 1 1 
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TABLE IV 

OFF-DESIGN SUCTION INFLOW INTO THE 

AFT FOUR CHAMBERS AT HIGH REYNOLDS NUMBER 

104 x 104 x (^ -1) 
Chamber Chamber C-t 

Run   Chamber Slot Slot CQc c<k 
Number  Number Number -v0* Rs 

Rh (calc.) {m&as.) co 

154     8 51 -0.573 7.32 60.54 .33978 .32306 -5.18 
52 1.545 19.73 167.50 
53 2.672 34.12 297,56 
54 3.559 45.45 401.86 
55 4.200 53.63 487.75 
56 4.767 60.88 561.68 
57 5.239 66.89 626.25 
58 5.624 71.81 682.32 
59 5.992 76.51 738.04 

9 60 0.000 0.00 0.00 .35184 .37905 -7.18 
61 1.636 20.89 174.97 
62 2.785 35.56 305.90 
63 3.624 46.28 403.59 
64 4.218 53.86 482.91 
65 4.818 61.51 559.44 
66 5.298 67,65 624.18 
67 5.734 73.21 685.36 
68 6.084 77.69 738.23 

10 69 -1.290 16.47 134.44 .34378 .36694 -6.31 
70 1.026 13.10 109.73 
71 2.368 30,23 256.56 
72 3.370 43.03 375.26 
73 4.291 54.79 484.45 
74 4.935 63.01 573,03 
75 5.6/4 72.45 668,42 
76 6.220 79,43 743,64 
77 6.820 87.08 827,44 

11 78 -1.363 17.68 144,29 .35644 .41182 «13.45 
79 1.516 19.36 162,20 
80 2.936 37.49 318.20 
ei 3.956 50.51 440.47 
82 4.537 57.93 512.23 
83 5.154 65.81 590.08 
84 5.553 70.90 644.80 
85 6.022 76.90 709.52 
86 6.355 81.14 759.62 
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TABU V 

jOgL COORDUUTKS 

17-rOOT CaOM) STUAICHT UKUUR SüCTlOli WUC 

v 

0 
0.4 
0.5 
1.2 
1.6 
^.0 
2.5 
3.0 
4.0 
5.0 
7.5 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45.0 
50.0 
55.0 
60.0 
65.0 
70,0 
75.0 
80.0 
85.0 
90,0 
95,0 
100.00 

o 
0.1549 
0.2240 
0.2779 
0.3250 
0.3652 
0.4142 
0.4598 
0.5471 
0.6289 
0.8142 
0.980C 
1.2632 
1.4931 
1,6770 
1.8181 
1.9181 
1.9789 
2,0000 
1,9789 
1.9181 
1.8181 
1,6770 
1,4971 
1,2730 
1,0240 
0,7461 
0,4642 
0,2044 

0 
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TABLE VI 

CHARACTERISTICS OP HODEL SLOT AMD METERIWG HOLg DESIGN 

17-FOOT CHORD STRAIGHT LAMIMAR SÜCTIOW WIWG 

Hole Spacing « 0.50 inch 

Chamber                Slot Location Slot Width Hole Diameter 
Number               Ninber a c) (in.) (in.) 

1                          1 1. 000 0.004 0.0350 
2                         2 3. 000 0.0350 
3                         3 5. 130 0.0350 
1 4 7. 323 0,0320 
3                         5 9, 529 0.0320 
4                         6 11. 735 0,0292 
| 7 13. 941 0.0310 
! f                         8 16, 147 0.0320 
4                          9 18. 353 0.Ö04 0.0350 
5                        10 20. 559 0,005 0.0292 
1 11 22. 765 0.0310 
5                         12 24, 971 0.0310 
6                         13 27, 177 0.0310 
\ 14 29, 749 0.0320 
6                         15 32, ,320 0.0320 
7                         16 34 180 0.0320 
' 17 35 .910 0.0320 
7                         18 37 .540 0.0320 
8                         19 39 .070 0.0310 
) 20 40 .520 0.0310 

21 41 .890 0.0310 
' 22 43 .190 0.0310 
8                        23 44.430 0.0292 
9                        24 45 ,610 0.0310 

25 46 .750 0.0292 
26 47 .840 0.0292 
27 48 .890 0.0292 
28 49 .900 0.0292 

t                       29 50 .890 0.0292 
( ?                       30 51 .840 0.0292 

1( 3                       31 52 .770 0,0292 
32 53 ,6S)Ü 0,0292 
33 54 .530 0.0292 
34 55 .370 0.0292 
35 56 .190 0.0292 

1 36 56 ,990 0.0280 
1( 37 57 .770 0.( 05 0.0280 
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Ch«b«r               Slot Location Slot Width Hoi« Oiaawtor 
Nu "b«r                Nuab«r (1c) (In.) (In.) 

] 1                       38 K.ijC 0.005 0.0292 
39 5V.268 0.0292 
40 59.995 0.0292 
41 60.708 0,0292 
42 61.405 0.0280 
43 62.088 0.0280 
44 62.755 0,0280 

I 11                       45 63.408 0,0280 
1 L2                       46 64.045 0,0292 

47 64.670 0.0292 
48 65.285 0,0280 
49 65.898 0.0280 
50 66.511 0,0280 
51 67.124 0,0280 
52 67.737 0,0280 
53 68.350 0,0280 
54 68.963 0.0260 

1 2                       55 69.576 1 0,0260 
1 3                       56 
i 70.189 0.005 0,0310 

i                        57 70.802 0.006 0,0292 
58 71.415 0,0292 
59 72.028 0,0292 
60 72.641 0,0280 
61 73.254 0.0280 
62 73.867 0,0280 

■ 
63 

f                        64 
74.480 0,0280 

] 75.093 0,0280 
1 3                       65 75.706 0,0260 1 4                       66 76.319 0.0320 

i 1                        67 76,932 0,0310 
68 77.545 0.0310 
69 78.158 0,0310 
70 78.771 0,0292 
71 79.384 0,0292 
72 79.997 0.0292 
73 80.610 a.006 0,0280 
74 81.223 0,007 0.0280 1- %                       75 81.836 0,007 0.0280 1. 5                       76 82.449 0.007 0,0330 
77 83.062 0,0320 
78 83.675 0,0320 
79 84.288 0.0310 
80 84.9CI 0,0310 
81 85.514 0,0292 
82 86.127 0,0292 

- 
83 
84 

86.740 
87.353 0.ÖC • 7 

0.0292 
0.0280 
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Chamber 
Number 

15 
16 

? 
16 

Slot Location 
Number (%c) 

85 87.966 
86 88.579 
87 89.192 
88 89.805 
89 90.41P 
90 91,031 
91 91.644 
92 92.257 
93 92.870 
94 93.483 
9.'> 94.096 
56 94.709 
97 95.322 
98 95.935 
99 96.548 
100 97.161 

TABLE VI (Continued) 

Slot Width 
(in.) 

0.007 

0.007 
0.008 

0.008 

Hole Diameter 
(In.) 

0.0280 
0.0350 
Ö.0330 
0.0320 
0.0320 
0.0310 
0.0310 
0.0292 
0.0292 
0.0292 
0.0280 
0 0280 
0.0280 
0.0260 
0.0260 
0.0250 
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TABLE VII 

FAIKING ORDINAIES 

17-FOOT CHORD STRAIGHT LAMINAR SUCTION WING 

Abscissa x Ordinate y Ordinate y 
Measured from Airfoil Nose   Fairing No. 1 Pairing No. 2 

(in.) (in.) (in.) 

-30.000 0 
-20.000 5.903 
-10.000 7.467 
-6.919 0 m      m 

0 1.005 7.920 
10.000 2.206 7.719 
20.000 3.173 7.433 
30.000 3.944 7.112 
40.000 4.549 6.786 
50.000 5.013 6.470 
60.000 5.356 6.163 
70.000 5.594 5.867 
80.000 5.740 5.580 
90.000 5.800 5.304 
100.000 5.780 5.037 
110.000 5.680 4.781 
120.000 5,500 4.534 
130.000 5.240 4.297 
140.000 4.900 4.042 
150.000 4.480 3.696 
160.000 3.980 3.246 
170.000 3.410 2.708 
180.000 2.810 2.094 
190.000 2.210 1.428 
200.000 1.610 0.734 
210.000 1.010 0.330 
210.479 . . 0 
220.000 0.410 
226.833 0 

ft 
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TABLE   '111 

MODEL COORDINATES 

MODIFIED SEARS-HAACK LAMINAR SUCTION BODY OF REVOLUTION 

ü^l r/Ll 

0 0 
•005 .00433 
•010 .00638 
•030 .01239 
•050 .01714 
•075 .02189 
•100 .02664 
•^O .03412 
•200 .04017 
•250 .04505 
•300 .04892 
350 .05186 
.400 
.450 

bOO 
850 
.900 
.950 

.05392 

.05515 
•500 .05556 
•550 .05515 
.600 
.650 
,700 .04892 
750 .04505 

.05392 

.05186 

,04017 
.0341/ 
.Ü2798 
.02342 

1.000 #02097 

^O30 .02050 
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TABU IX 

CHABACTERISTICS OF MODEL SLOT AMD METERING HOLE DESIGN 

MODIFIED SEARS-HAACK LAMINAR SUCTION BODY OF REVOLUTION 

All slot vidths » 0.003 inch 

i 

Slot Hole Number 
Chamber Slot Position Diameter Of Holes 
Number Number (% Lenstth) (Inch) (Per Inch) 

I l .0556 .0260 5.23 
2 .0699 .0260 6.80 
3 .0642 .0292 6.98 

i 4 .0986 .0465 4.42 
* > 5 .1129 .0260 4.88 

6 .1272 .0260 5.32 
7 .1416 .0260 5.82 
8 .1559 .0260 6.77 
9 .1703 .0292 6.04 

2 10 .1846 .0320 5.28 
3 11 .1989 .0260 5.50 

12 .2133 .0260 5.78 
13 .2276 .0260 5.96 
14 .2419 .0260 5.87 
15 .2563 .0280 5.56 
16 .2706 .0292 5.20 
17 .2849 .0310 4.78 
18 .2993 .0320 4.48 

3 19 .3136 .0330 4.23 
4 20 .3280 .0260 5.06 
- ♦ 21 .3423 .0260 5.12 

22 .3566 .0260 4.92 
23 .3710 .0280 4.72 
24 .3853 .0280 4.54 
25 .3996 .0230 4.35 
26 .4140 .0292 4.23 
27 .4283 .0292 4.00 

4 28 .4427 ,0310 4.00 
i i 29 .4570 .0260 4.48 

30 .4713 .0260 4.39 
31 .4857 .0280 4.26 
32 .5000 4.15 
33 .5143 4.02 
34 .5287 .0280 4.00 
35 .5430 .0292 4.00 
36 .5573 
37 .5717 

5 38 .5860 .0292 
• 39 .6004 .0292 4.00 

40 .6147 .0292 4.00 
41 .6290 1 1 

6 42 .6434 .02 92 4.C )0 
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TABLE IX (Continued) 

Chamber Slut 
Number Number 

6 43 
44 
45 
46 
47 
48 

6 49 
7 50 

51 
52 
53 
54 
55 
56 
57 
58 

7 59 
< 60 

61 
62 

8 63 
64 
65 
66 
67 
68 

Ö 69 
9 70 

71 
72 
73 
74 
75 
76 
77 

1 78 
9 79 

10 80 
81 
82 
83 
84 
85 
86 
87 
P8 

1 ) 89 

Slot 
Position 

(% Length) 

.6577 

.6720 

.6864 

.7007 

.7151 

.7294 

.7437 

.7509 

.7545 

.7581 

.7616 

.7652 

.7688 

.7724 

.7760 

.7796 

.7832 

.7867 

.7903 

.7939 

.7975 

.8011 

.8047 

.8082 

.8118 

.8154 

.8190 

.8226 

.8262 

.8297 

.8333 

.8369 

.8405 

.8441 

.8477 

.8513 

.8548 

.8584 

.8620 

.8656 

.8692 

.8728 

.8763 
,8799 
.8799 
.8871 
.6907 

Hole 
Diameter 
(Inch) 

.0280 

.0280 

.0260 

.0260 

.0310 

.0292 

.0280 

.0260 

.0260 

.0350 

.0320 

.0292 

.0280 

.0260 

.0260 

.0410 

.0350 

.0230 

.0292 

.0260 

.0260 

.0260 

.0410 

.0350 

.0310 

.0280 

.0260 

.0260 

.0260 

.0260 

I 
.0260 

Number 
Of Holes 

(Per Inch) 

4.00 
4.00 
4.19 
4.00 
3.66 
3.31 
2.89 
8.56 
9.12 
9.56 
9.98 
9.62 
9.04 
8,58 
8.14 
7.76 
7.44 
7.4A 
8.28 
8.92 
9.73 
10.05 
9.42 
8.76 
8.24 
7.82 
7.44 
6.37 
7.44 
8.32 
9.04 
9.74 
9.70 
8.98 
8.40 
7.86 
7.44 
6.48 
7.56 
8.44 
9.20 
9.90 
9.56 
8.86 
8.86 
7.84 
7.44 
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TABU IX (Continued) 

Slot Hole Number 
Chamber Slot Poeltion Diameter Of Holes 
Number Number (Z Lenftth) (Inch) (Per Inch) 

11 90 .8943 .0330 7.72 
91 .8978 .0310 8.48 
92 .9014 .0292 9.14 
93 .9050 .0260 9.72 
94 .9086 9.82 
95 .9122 9.20 
96 .9158 8.64 
97 .9194 8.18 
98 .9229 7.80 

1 L 99 .9265 .0260 7.44 
12 

■ 
100 .9301 .0330 7.84 
101 .9337 .0310 8.48 
102 .9373 .0292 9.00 
103 .9409 .0280 9.78 
104 .9444 .0260 9.98 
105 .9480 9.66 
106 .9516 9.18 
107 .9,>52 .0260 8.86 
108 .9588 .0260 8.60 

12 109 .9624 .0260 8.30 
13 110 .9660 .0330 7.84 

111 .9695 .0320 8.28 
112 .9731 .0310 8.62 
113 .9767 ,0292 G.94 
11« 9803 .0280 9.24 
115 .9839 .0280 9.78 
116 .9875 .0260 9.82 
117 .9910 .0260 10.05 
116 .9946 .0260 9.84 

1 119 .9982 T 9.52 
U J 120 1.0018 .0260 9.24 
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TABLE X 

STATIC PRESSURE ORIFICE AND MICROPHONE LOCATIONS 

MODIFIED SEARS-HAACK LAMINAR SUCTION BODY OF REVOLUTION 

Static Orifice Position Microphone Position 
Number (% Lencth) 

1.00 

Number 11  Length) 

8.96 1 1 
2 3.00 2 30.82 

3a,b,c,d 5.00 3 57.89 
4 7.50 4 73.48 
5 10. C4 5 77.78 
6 14.50 6 81.36 
7 19.50 7 88.17 
8 25.00 8 91.76 
9 29.50 9 95.34 

10 35.00 
11 39.50 
12 45.00 
13 55.00 
14 59.50 
15 65.00 
16 69.50 
17 74.91 
18 79.93 
19 84.95 
20 89.96 
21 94.98 
22 '00.00 
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TABLE XI 

SUMMARY OF TEST POINTS CHOSEN FOR 

ANALYTICAL STUDY OF BOUNDARY LAYER DEVELOPMENT 

Run NumbT        Length ReyT.oIä«; Number RL 

41 6,302,360 
46 6,337,120 
52 8,754,970 
66 13,585,310 
76 14,742,850 
78 14,708,310 

397 17,228,480 
421 19,583,940 
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Fairing 

/— 17-foot Model 

View C 
Sound Source Installation 

Tunnel Wall 

Fiber Glass Insulation 

Fiber Glass Cloth 

Fiber Glass Screen 

Perforated Sheet 

Section D-D 
Acoustical Treatment 

Acoustically 
Treated Area Sound Source 

Speakers 

Tunne 
Cellini 

Model 

  Chamber No. 9 

Section A-A 
Internal Sound Installation 

FIGURE 66  ACOUSTICAL INSTALLATION 
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O KOT WIRE DMA  AT REFERENCE MICROPHONE 
▲ REFERENCE MICROPHONE SOUND PRESSURE DATA 
£  kLANE WAVE EQUIVALENT OF REFERENCE MICROPHONE 
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~ 30° Swept Wing 

Thin Straight Wing 

» 

I 

■.' 

FIGURE 72 

NORAIR 7-   BY  10-FOOT WIND TUNNEL TURBULENCE AND NOISE LEVELS 
WITH MODEL AND ACOUSTICAL WALL  TREATMENT  INSTALLED 
300 SWEPT SUCTION WING UNDER THE  INFLUENCE OF  SOUND 
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FIGURE  73 

f,  T^i?NPARIS0    0F S0UND FrELD ^VERSES AT MIDSPAN 
6   LNCHES AWAY  FROM WING MAXIMUM THICKNESS.   Rc = 9 8 x   ,06 

(WITH HOT WIRE READINGS AT EXE OF 
EJUNDARY UYER.   Rc =  8. I  x   106) 



■zn- 

a 
3 
vj 
o 

CO 

i 
w 



•C8?' 

i 

o      »    o 

7S 

O 
c 
> 

trt 

3   ü 
c     o 

o 
* o • 

o f 

i 1 

o ! 

hi 
/ 

o • 
_ 

« 

I 
eg 

o 
/O 

z 
D 

O 
00 

i   n % 
f  m q 

x*  a at 
o  cr o • « 
^       H 

fi 
U rr 
O H. 
•    0 

s 
» ft 

5 
9
   I 

•       ►* 

M 

| 
jg ►- 

n Q (n 
JO c n n ■ •o rr 

m H> 
^- • 0 
* 3 
•^ »— 
•*J Ul «i 

^* 0 
M 

a 
1 

^* er z O | « 0 

*• 
3 

3 
^" • Ut ►* 
!*J| n « 

s 
ft   I 



kM IM, CQ • 1.17 ■ W4 

AfMltiaMl »mettm tmt ■• TtraMiCl«* «t 
1SO/J00 cf«. »» *t ^a Ul, 

CQ • t.M s 10-4 

0.«r 

AdiltlwMl tectioa for ■• TraMtti«* t 
»7 €9; US.) *. ■«■ 110 
CQ • l.«3 s ir^ 

-A»* 

JUMlKlaMi HwtlM tmt ■• TtOMttlon «t 
300/iOO CM. 127 *, hM 112 

CQ • 1.4f B 10*4 

O.tr 

AMltiMMl fttetlM f«r ■• TtaMitlM mt 
U) cp«, Ul *, IM 10t 

Cq'* 1.S0 u Mr* 

•A** 

o.«r 

Addltt«Ml teetiM for Me frmaiUom mt 
•10 «v«. I» 4k, Im U* 

Co • l.M i 10-* 
 ^^    ——■ I..—I—   Wl—M , 

'*** 

0.4    ,    0.« 
s/c 

AddlUoMl tuctioa for Oo TraMltlea «t 
MO/l») cp«. 123 db( tea 11J 

Cq • l.M * MT4 

AdditlMBl Suctioa for Ro TnuMltloo «t 
Av rri»iiory, 4b. Ina 114 

CQ - 1.7* c W4 

0.4 
■" 

r.  T 

_r i 

i 

i 

i 

, 

n f J o 

• 
( » 0. 2 0 .4 

s/c 
0.4 0.4 1.0 

PICOII    74     ADOinORAL SUCnOi -A»g. UQMIUD TO miHUM UNXMt TIM AT VA1I0US nUKitaCllS AMD 
ERIMAL MWO PUStOU UVIU. Ic - 20.2 s 10* 

-2ö4- 



ftt 

I 
kt 

1 
It 

Hktämm On« Snetioa, Me Sonad 

Ina 1*2. CQ • 1.30 B 10"* 

l.V 

I 

Addltlooal Suction for lo Traasltioa «C 
130/300 CM. 130 db, lua 149. 

.•4 

AddltlMMl Suction for lo Tcan«ittea «c 
300/600 cp«,  128 db, »•- ,A». 

CQ • L.»9 x 10 

0.4 

Additional Suction for No Tnasltlon «t 
600/1200 cp«.  125 db, «an 147, 

CQ - 1.54 x 10"* 

072 Öt? Öt? OTT 
x/c 

JI.O 

1.0 
riCUU   77       ADDITIONAL SUCTION.  -A**,  UQUIUD TO MAWTAIM LAKINAK PLOW AT VARIOUS rUQUBMCIES AND 

IXTIRNAL SOUND PUSSUU LIVILS.  R«. - 21.5 x 106 

- 'w ^  



*C"- 

a 

P g 8 > »fl    I     I  f'   I '! I        ? t 
0

* 



-L9Z- 

% 

f 

! 

s 

H 

S 
« 

5 s 

i 

r rrr 
ö » ß 5^ •      •     •     • 

■   •  •  • 
•   •   •  • 
5 » B S 
M      M     ■     M 

S  8 S 8 
i  ^ ^ ^ 

-j an e » « * 
III! 

•       •      •     • 
S » S 8 

s 

i 

M 

n 



'9QZ- 

m 

9 
S 
9 

8 
8 

s 
s 

8 
8 

S 
s 
s 
8 

a  i   5   s 

« « s s •     •     •      • 

■ • •  • 
• • •   • 
M   M    »    ^ 
m   m   m   m 

o o o  o •    1(1 

«     •     •      • 

S£SS ******** 
S )5 »• M 
■ ■  ■   ■ 

• » • • 
u  • w   o 

s e 

■ 
M 
• 

M 

p» 
O 

H 

O 

o o 

frrtfT 
33 



-69Z- 

i 

ff 
— W    M 

•      ■ 

K     M 

O   O 
•      I 

it 
8 8 
w  m 

« #t 

M H 
A n 
■ • 
o o • • 

I 

M 

n 



-06Z' 

« «5 

g 
i 8 

? 8 
S o 8 
| 8 
E 8 g 
Q 
ü 
i 

e           i 5 

c 
S 

m 

B   
0
- «        1 t 

IT     C 
> 

"^ r 

«  M M M   » 
1 l» A A »*   0 . ii n    ■ ^ 

V 
>> OO O |    0 

1 
i i 
i 
r 
/^ 

i r 

■ 

K 

O 

O 

«1 A 

-1 
1 r 

i :—3 

_  

t 

L 

L. 

i 

.-, L 
"S "h  

r' D 

I r 
« i 

? f 

• * ■ 

M 
M 

M 
O      » 
^    

0
i 



■T6Z- 

o 

i
1 

o    - 

g 
01 

9 

5 M 

a 
X3 

4 

S 

3 

% 

m   — 

o 

o 

> 

r 
i 

 1 

5                     ! 

M 

-V-H 
\ 

i 

g  -_\- 

a   i  a 
P# :»•        .»* 

«    •   »      © 

n 

o m 

9> 

■ ■ • 
• • •    ti 

« « K  • 
M M M 

o o o I     •    I 
♦■♦•♦■ 

LZ3" 



1 

* 

c 

SI 

§ 

D 

I 

M 

fff »-   •■•    »• 

5S ? • •  • 
«no 

JO £> /o 
■   ■■ 
• •    ■ 
» w   >• 
w   »   ^ 
M    M    M 

o o o •    I     • 

n 

♦ 



s 
O 

s 

I v> 

o 

o * o 
*• 

,     •*   o 

t 

s s 
5 8 
as 
si 
a n  n o JO 
■   i 

X    M 

»- o o •     •     • 

1 
1 

2) "1 

1 

#  ^ 

^ >    A i 

....  - ..„     1 

i t 

i 

i 
| 

 i . 

L           ..   . . 



-♦r6? 

e 
n a 

It   n 
o 

9 

w u 

M 
•s, 

O 

u ■ A 

m 
w 

O 
i 



o 

¥ n 
A - m o 

o 

" 5 w > 
S * 
35? »-> »i 0
 E z O z 

So 

i§ 
rj > 

if 

'     ß X   H 
n g 
■ > 

O H 

w O 
M  O 
w z 

C    V3 
c t—  O 

^ H 
•    IM 
*- o z 
« 
•- c 
ff'Z 

o « 

9    9 

r f «A   « 

9 

I 

8 

n 
^? 

hi 

o o * 
00 

< 
0* 

hi 

L ! L 

] 
r" o « n 

o 
00 h _j * 

o 



§    n 
•   o rt 

?   * 
o 

CO 

H M 
o (A 

s 
z o 

s 
pi 

s H 
O 

OB 
OB 

£ 

25 

o 

B
.» 

8 

o 

t 

-is* 
O 

• IV 
\ 

v 

a 
-o 

a   s 

w«  o 
os  j 

o o o 

i 

»1 o 
CD o hi 

o 

o 

M 

n 

o 

o 

 _, 

I ^ 

3 ",   > 

( ■ 1 
K    '      "              * 

s; ;     »n ~   k---       — 

^ 

7^ *  - 
- ^- ^   '      ^ 

   _. 

V-n 
■'            -     f 

4 H   •  - 
i 

i        i i 

OD 
o  o   o O     en 
■    in 

•    • 

o  o I     t 



« 

o c 
M 

OB 

««1 < 

t 

I? St c 
aq 

HO 

u la 

?   5 

s 
0 

Id 

o 

8 S 

J.—.a. 

5 

n 
9 

■ ■■■ 
W    M    »•    1^ 
*»  o  C^ »*• •      •      •      « 
U>   M   ^   1^ 

K    M    H    M 

O   O   O   O 

«« 

< 

%? 

9 \ *         s        » 

^T^! o 

0     ^ 

i 

f i 
i 

o -   *■ '   ■ -        -  -t 

i 

.   « 



uMcmeüiu. ntmmcm 

I 

*.i ■ 10* 

s«. 
tot) 

1 >ä 

W   -d- ̂ ^ä ...„ 
1                                       d . '     1     1     1 

-tu 

> i •   . . . _ ,^ 

r=^ 

- s 

i 10 

UU 

-   XTASJ  ■•^>-i           ~^~'^             1                  1 .„ *v^> "*~"""^»w^   ^•jtm                1 

•r ■ ^^Nw                      i 

- s ^""-"■"■--.^           1 
n      .         1 

-) j 
i in 1 1 

ruqjMCT, CFI 

C    B.« »IM.tll»!*« aCIiu«,   SU-TS 

i    ■» Jl,  U* »-criOH.   iUuTi 

a» AU su>rs 
»   K» s«, usi »ens». 

cq -   J.« i   iü-'-.   »U-TS i>fc»lB 

KK »7. nmmm K.cnc«. atno» 
o» »u stors 

UM 7o, nimm!» atTJa«, 
CQ - J.54 . ic?-4-. »tots StttlE 
ro ii.-c - .Jos 

WS 77,  LOK SL'CTt«.  SLOTS 
ifALtS IC tie   -   .Oil 

«ü»   Ui.   UW SÜCTIO», 
CQ •  3.»» •   U1'4.  SUBS S£*LH! 
TC «»c  -   ,i7 

BJ*   12t,   mSläH SUCTIOK. 
CQ » i. 1? •   IO-*.  SICTS SSAU» 
10  ./C   •   .17 

aw 4?*, nimHM SUCTIO«. sum 
StAUB TO t/c  -  . 5J* 

WM J4, (OStUM SUCTIW, 
C<j -  4. i» «   10-4,  fe-CIlO» Mi 
*a su .'s 

K;» 2«.   L» SUCIIO»,  SLOT!. 
itAUC K) «/c • .205 

«U» 32,  LOK SUCtKM, SLÜTS 
SMLB3 TC »/c •■ .205 

MIN  32*,  S«ft£ »S MIN 32 »UT 
W SICTIO» M SUI *I 
«/c   "   .20» 

CN *a. »miWM a-cTio*. 
CQ • 3-70 «  iO"4, sunrs 
SS»l.EB » «.c   ■   .51 

»11 S3,   W« SUCTiO*. 
CQ • t.oi » iü-4. »cm» 
o« *a SLOTS 

Cn • 3.7? « io-4, suena» 
0« *u su>?s 

4     HJ«   US,  MiSIKL'H  SLCTIOII, 
CQ -  3.70 «   lU"4.  fOHlkW 
SUCTIO« Hlf.«» 

IM/WO    JOO/AOO    »00/1200   U00/2*Ü0    2400/4«00 

«riimouts IN »cnisuc» im, SLOTS 

I 

FIGURE 90 

SOUDD PUSSUU LtVtL POi TUMITlOi. ** *  «llICTI» OT TUUflOlCl 
ic SIAFT SUCTIO« vtm. unou TNE imruinct er sou» 

-298- 



:   «» -*i. mimmm sucnm. iwn ****.& 

i   mm »i*. Hisi»aK S<TSO»  SWTI «r 
•/« -.•»«•   a» 5»» «JiM-r BL<r! 

2   ■!• 1». «US!«» «OK«. c% -:•».■   .^ 
»BCTI« 0» aU  KUT» 

!     0» W.   »a« ««l-TIO».  CQ "  J-t» i   -i-  -. 
turn »ku» to •<.- -   >s 

K» ». «»sn« mcnm. turn iuue re 

\ / 
is    0 «, • »  : 

m» %?. «^ytoi «fcciy». *w;Tf«« » »u- iwn 
Km 'i, mtvm isucTja», :-„ - i.s- . iv». 

iLtTTS  UMiA 70 MJz  •   .im 
Q    W» »?.   UK «ÜTii«.   SUIT» Si«US!  P. 

5   Km us. u» s«rfa»   L^ . j.» . it-* 
turn tttxM, ro a.'t - .i' 

ston tttiMi re , 

-*— «, 
ma »i«, «wum Ricno», sum it»,.« 

i    «I« i*. NSllCM stscnon. Co - • i» .   :u- 
suc-n» ■» tlX SbBS 

!»/JSS     5».'«»     »ffj'iäa, ;»    i«co    2«(»/a«o0 

I:    Bl» «,  US »CTIO«,  SUCT!!» g» »li tuzn 
t   w» UM. »imaom mxTtam, üäT» It 

a«» mnocT ACTS« 
3  «fli i=. Hmuiw wvcnm, sum »T 

«« •.!!»» .»» «» ssimeT swrnt* 
s   «» 4s, ijs wcTua. SUCTIOB u« »u sum" 
O  m* *•'*. KitnH» mcjiim, mcnm .m tu- SL.;^« 
?   &• u. «mictj »mo», »uc-no» o» mu. si^r«. 
^   «m >*, L« »cftt«. itcTioii a» «LL su^ri 
•   »><M, ««a«* «K-n*. «j ■ ) '' . i'--''. 

UOfiMC surfs »»US K> ./c  ■    Jj 

«i:T;t« * *u iu.'fs 
It» .. i, «imj«.* ii.-rn;*   ;.. 

;5« HCC 

ruwiBm, en 

5Ö/MB      JflO-'SOn    MC'tiSO   :^0'}*00    i*>oe:**m 

♦•rifölfT ST*?]     MSiSvUt  ,«iF;;.f,s  r.uiis'f.   >f>»*   S?*;Er 
rmmtm .Miriiw c*« ^Br i-i-j.-».>*.. *   f«*ssi 
Tio« li? f  r»r ituiti* «'A.UJU s«,.:  .,-.t, »B..I 
^300  CS^ wtl*  !£>•  *:.-;..   7UISSIU    ^^;f.x:i  .■ :   -t- 

FIGURE 91 

■299- 



I50i 

{/) 
LÜ 
cr 
a 
a z 
D 
o 

< 
u 

cr 
u 

IOC 

5Q 
O 

± ^ 

■£$2.5-1$ 

FREQUENCY RANGE 
FOR AMPLIFIED   2-DIMENSIONAL 
TOLLMIEN -SCHLICHTING 
OSCILLATIONS 

h50 

-5 

SOO 1000 

FREQUENCY- f- CYCLES/sECO^ 

-I 

1500 

I 
m 

ft" 

t 

FIGURE 92 

SOUND OF DISCRETE FREQUENCIES ALONG TUNNEL AXIS WITH SUCTION FROM 
0.5c to 0.95c, FRONT SLOTS AND STATIC PRESSURE ORIFICES SEALED. 
(No suction upstream of 0.5c) 7 x 106 

■300- 



-ioe- 

i 

t 
10 5 < 

O 
z 
H 

3 

P3 
z i 

ö n 

5§ 
z 

^^ 
Z CD 

r 

z 
H 

O 

z tß 
M 
o Z 

c 

H 
G 

z o 
P5 

O 
s 

p o o 
o o o 
-b. o 00 

p 
o 

p p o 
5^ 

p 
öö 

c 73 
m 
vO ?> 

N3 

Cn 

5 

Cn 

K       N3 

Ln 

O in 

N3 

Cn 

ci?> 
-^ 

b PS 

V K' 
k 

r > n s- 

^ 
/ 
/ 

..*   .< 
CD  >» 
o z 
c o 
z c: 

> > 

-< 
-n 

r- ^ 

-< ID 
m <= 
33  ^ 

z 

<o 

r ^ 
:> 
m 

—i 
X 
o 

—« "0
r
><" 

o"
0
- ^

1 

m 
o o 

2>2 

CO 
' JU ■■■- 
m 
00 
CO 

<oo 
m 
orn 

33 
m 

> 33 
r- 

—4 U
TR

A
 

G 
  

TU
 

> 
o 
m Co 

z 
moo 

>5 X r- 
O0 ^H 

-< I 



■zoz- 

fr- 

.3 o z 

m o 

o — 

is 
» ? z 

o 
w r: >B 
■ I p 
» ü > 

pi «> 

= 2 
■x. c 
n * 

o 
c 
TU 

o ^ O g       g       s       ; 3 < 

A 
' !           ! 

i 
< 
^ 
^ 
^ 
^ 

\ 

r 

S 

; 

i 

for-       • 

s 

\- 

- 

S 

V 

t 

, 

i 

i 

4 

i 

1 o 

o m 

<iot>o 

iiii 

Ö cf w ö i 

n 
8° • 

§ 



•coe- 

ff- 
% 
i 

o 

si PS <n 

gg 
n 

I o is i ä •-• 
'2 S«  C 
" «   K« 
. i   S> y      '. 

f • § X    C 
_    P5 O     5r3 

; ^ _, g ft 
-. o at it.    ^ 

o 

<3D£>0 
3» je so » 
c c c p Z Z Z K 

^ ^ *■ *■ 
«J ^ ^/i ^ 

= gsl 

_i»i_i- «- j 
^u-    Ac -j — to 

<—  SB W P 

i" 

n o 

c 

9« 

'    R 

o c 

i- w w                      4 C                     ir 9- X 09 * o                 - 

■ 

1 

1 

i 
i 

; 

; 
t 

1 



•t70€- 

ff- 

p .Sa s 

n 

D>0 
J» » J» 

US 

5 

R 
s 

o 

9 

N — O 
Nl W O 

n 
4 

i o o 
n 

s 



-en Ut. ■ 

6i, Sf- 

% 

i 

o 
"a in > 1 
C   SE w 
P) w o 

o 
&• in o c 1 c z o 

n 1 
-i — r*  r-« 
O 3t o 
Z  I-. o 

H ^. JO C 
-T M c 
•   ^  H •T3 8 

- o z 
pi n c 

X    JO   JO ?3 

-a
5 

O I en 
p: 

^5 vO 
.- c -vl 
z 

c n 
n H 
z — 
O  O 
V. z 

o r- 
•»i m 

D00 
90  JO  X 
c c c z z z 

n 
 ff •   •   •       c *- - o     z w w O 

n o 



■90C- 

ft 

r- 

k'i 
S " 

.S3 

%*? 
c 

SO 
5tS   00 

e>           >?             o             o              e 
• o 

■■» 
;■ ' 

v. 

V                                   i 

\     \ 
\ 

:
   \ 

M 

!         \ 
J • 

xT 
8   - 

,   I S3          \ 

^ isi    \ 
:      i 

i 
 1 if  

:
 \ 

V 

V 

V 

\ 
■N 

\ 
\ 

» ;        » <          ! 

v. 

\ 

i. ... . -J 

1         i        < 

i         i  _i_. —  i_ 

j s. 

b         i 

| r,  

r'^ ^K        1 

1            \ 

\. \ 

^ 
\ ^       _ J 

\r     : 
\[ V 

-^    i 

I 
S                   1 

v. r- 
( 
i 

o>« 
8g i \ > - . 
S5 s 
^ , 

n * — a: 
M (A 

i gs \ 
" 

j 
! i 

:     i \    , 
i \ 

\ 
y 
\     i 

: 1 r               
! 

1 

«55 x n n >-   X   V 

■"l w in 

PI I/. ■»! 
?« C O 
Z O » 

^5 O i" 
in z o 
C r «s 

< n 
m H 
r- >- 

o 

0<a>o JO   JO   JO   JO   JO 
C c C C C z z x S z 

in 

5 p 



:of- 

eric 
8
!
- 

0 >-j 

i/i > 

-i  H 

m K 

3 

n   ;c 
S   P. 

5i n 

n 

< 

♦ 



lO- 

# 

U 

ri 

10" 

~   MAXIftm SOUND FIELD 

MEDIUM SUCTION 
SMOOTH WING 

LOW SUCTION 
SMOOTH WING 

P1NHÜLES  IN SEALED 
/<-      FORWARD SLOTS 

• * 

10e lü7 4 x   ID7 

* 
FIGURE 100 

VELOCITY FUCTUATION, -f-,   FOR TRANSITION Wim SMOOTH  WING AND 

PINHOLE  IMPERFECTIONS AS k  FUNCTION OF C»-ORD  REYNOLDS NUMBER 
30°  SWEPT SUCTION WING  UNDER  THE  INFLUENCE OF SOUND 

■308- 



LO" 

10 3 

10 -4 

4  x   10 
7 

Rc 

FIGURE  101 

■■tautlTY FUTTtAIluS.  M-l,   FuR TRANSITION WITH SINGLE AND MULTIPLE SLOTS OPEN 
X 

Wimol'T SL'CTKN AS  A  F'.'NCTJON  OF  CHORD  REYNOLDS  NUMBER 

30'   SWEPT  SU riON  WING  I'S'DER  THE   INFLEENCE OF  SOLNb 

•309- 



-OK- 

n 

Z 

<  ? 
W > 

^ w en 
n pi 

> 

-    H 

c: 

o 
z 

B 2 

M  00 
o • 

a: 

TJ 00 pj 

P5 ^ o m o 
wow C;  'TJ crt 
»CO 

>  JO 
HO 

w   II 

5 
H 
PI 

s z 

r> fo c 

z o 



-ne- 

< 

W H 

>^ 
H Z 

CO 
*- < 

en 
n PJ 
nj' 
2 H 
S| 
c CO 
z e CO c 
w o > PJ 
t-

1
 JO 

Pi» 
O 

CO N9 

> 
H Ö 
t-i t» 
O - 

CO 

o z 
CO 

§ 

S -TJ 
M 
o 

5S 
^ 

r
1 

w z 

CO 
13 

TJ 00 
PO O 
W O 
CO 
CO o 
G "TJ 

> so 

w II 

O 

H 
Pi 

■vl i— Z 
s~*   »-•   )-l 

owe 

» G »- 
Z O 

Cn • 
U 



-zu- 

c ä 51 w o > 
SH5§ 5 W > M 
M w r H 

H U» > W 
G Q S a K *• CO O 
w o S 3 

2 s r a G 

c > ö 3 
>  H C8 5? 

W M o w 
So     cn 

as ato  g 

^ 3 ui i-t 
^«€ 

^ 

i 

• 



-eie- 

5 z 
< Pi 

73 

3> 
H 

o z 05 

Cfl 

w > 

CO 

M 
o z 

o 

H 
CO 

> O 
Z OB 
o «• 

VO O 
s«« o 
o n 

c 

w 
\o It 

h- »fl 

r K 
z w 
w 

> 

H 
o x z 

PJ 

o c 

o 

o a* 

I 

r 



-«rie- 

< 

> H 

i C/) 

> 

O 
z 
en 

03 

»-   -»J 
4> M 
ON »-• 

> O 
Z 03 

^ UJ t- 
o ch r-j 
^ oi z 

m 
o n 
-  T3 CO 

c 

O 
c 

o 

5 »< 

Ul 
U' 

H 
PI 
n 

• z » >-( 

:< a 
P3 

cr- 

i 

r 



<2 
'J-:  —, 

^ - H 

O T: ? 
? ~ r S'  73   -Z 

"^   ^    Z    M 
W sO  > o 

c^ 

... gs  ^  ^ 

2 ^ » C r/) C 

i-
1
   PC   ._) 

on   ._ 

■z 
\jy   _ 

"    O x r
1 

cr> 



■9Te- 

i 

r- 
0 

H % 
70 t-i 
> 
Z 
C/J 5 M r— z 
d ^ l-t 
0 r H 
z "* 

0 
> H z 
H 

2 w 
•^ 
(^ 

z 
en s Ml 0 
c 5 n ^ > 
m CD 

3 
3D 

•^ 
-a Z M 

f—• > O 
> U> T3C 
z u> X ?o 
0 

0 H fi 
> DD !> ►- 
H 

4 
r 0 m 09 

O ■f> z vO O m ^ O 
CO 

n n 'TO 

CO CO 5 0 ^ ►< 

<-. JO 
S 2 0 ^ II 1 
z ?c *- »—< 

G 
Z »—• 

KJ X 
OD 
a-- »—' 

0 



•lie- 



•sie- 

t. 

H t- 
ii z o CO ci 

HS 
O  M 

> 
> r- 

n 

c 
z 

OD 

►5 

Z 

O 
z 

X 
o s: z 
DO 
•< 
z 
> 
X 

™
?8 

m 

CO  TJ 

o 
o m 

o 
n re 
'd z en ^ 
'   O 

a 
o 

ii 

OD 

o 



•exe- 

i 

H •- H 30 
> ^^ 
z z Z 
m CO 'S) 
»—* < -H 
H p-. H *—t 70 •—t 

Ü in O 
z rn z 
> CO 
H H a: 
u> ^ o 
■O z z cS/ CO 

C3 :E 
n 
n 

-^ 

n z 
?3 ^3 > 
c -* -o 
z X rn 

^- H H-! 
X! UJ 5 o O O 
vO r- TO 
o tn m 
03 z 
' 
t— rr n; 
o T) »- o o 

-< 
n •v H 
■J: tn 
n 

po z n 
O 

oc 

JN 



'OZi- 

H H H 
^5? z z Z 
If. cr C/l 
*—» < r-< 

H Pi 
73 a o en Q 

2; tr z 
> Crt 
H H X 

^ 
0 OJ 
i x>- z 

Ml '75 
O DB 

n G 
n 

-< 
m Z 

73 ?o > 
a 13 
z X rn 
v£) 3 

t-t 
0 

•* |> r- 
JD r ?0 

D 
03 § m 
* n H- 
f—* trt »-• 
O m N> 
O 
c 5 ►< 

n 
^3 H 
t/i n 

9 3= z n M 
O 

11 a 
m 

o 



-TZC- 



-zzi- 

H t- H 

^15 z 

H G 

O 

> 

O 
ä>3 

z 

G 
Z 

C7 
C 
n P3 

z 

H t—* 

O 

O 

03 
-< 

13 

Ov i—■ 
O UJ 

$2 
z 

ui rn 

a 
en 

00 

PI 

i-  H 

n "3 
n 
33 
Z 

PC'S 
n    rq 

n 

oo 

O 

*4 



■CJC- 

♦ 



-*?ZZ' 

H r- H 

z o z 
w i-i en 

H d H 
>-i C <-> 
O   M   Q 
Z^Z 

> r- cn 
H-   a 

o 
^ H C 
3^ Z   DO 
n cn -< 
-   a 

c z 
^ n > c m ig 
Z   TO   I 

'    H iij 

ro >- > o 
o rvj r

1
 c 

•^ ra jo 
Z p3 

O   M 
03

          ►- 

00   3   «^ 
o S> 
o < 

»' 
n H ■% 

TJ m Ä- 
en n 

'    § 
^O 

c 
(1  PI 

0D 

o 

4 



1 

•c^e- 

H 

•z CO 

H 

O 
•z s 3: 
> r 
H - 
4^  p- 
00  a 

r H 

ii 

o 

G 
n 

■2. 
> 

z ?o i 

'- — > o 
^D U)   t

-1
  G 

o m ^ 
o 
CD 

CC 
o o 
n ^3 

'Si 
'a -si 

H 
n 

w n 
-   a: 

z 

c 
II  ra 

oo 



'9ZZ- 

■r. 

t- 

• 



T- 



-eze
1 

(( 

'S. 

c 

I 



m 

- 

4 



-oee- 



■Ifi 

H H H 7C ?: F > ^- ^ 
^ z ^: 
y. ■y; 'x 
^-. < •— —j ~  H i—' 7:  ■—' 

X  C 
■*z rn -^ 
'> y-, 
H X   X 

T3   O 
u"- ~ ?: 
c > s: ^ -r r: 

^■- •*** 

r^ pc ■<: 
y. 



'ZZ£' 

-£  z H 
4> O ^ .Nr > •S) z n
 2 

■/. 

~ z H 
n ^ o C 
2 — z 
— z 
S? 

'X 
:r 

H c Tj - c: ^: z 
O ?c 
2 O CE 

*-/' 
7)    II 
»_i z _ 
5C   X > ■" 

5   - So 7»; H S W   X 3 » 
-^ > m 

(Mri ^—• 
^c  Q U.   t-

1 

c:   CT> z   ^ 
z - r:  ^ 
J>  H 7i 
kJi    33 "0 

z £ 'f. ^ 

H H 
^ n 
z i 

z 
H-Q 

PC 

a 
x 

?: 



•eee- 

73    ~    ~. 

a ~ 

F -' 
F 

-■  ^ -   ro 

~   U)   pc 

X 

/•' O 



-M:e- 

H r H 
5 z Ln ^-. C/i 
i—i •i »—( 
H G H ^— a "—* 
Q O 2 

^ z 
> n 1/5 
H * X 

a 

H 5 § 
O Z no 

'xi ■< 
OD a oi c z 

n > n tn ►0 
-• TO I 

* "fl 
53 »j* >—i 

H» {> o 
z OJ r c 

A^ m 70 
4> z tTi 
u-. a -n 
w D3 >~ 

o —■ < 
/^J H 
T3 m 
X n 

z 
PC HH 
-) o 

II m 

a 

Ik 



Vw**A/**^ 

V\A>**/\**** 

«c  - 8.* x   106 

x/c - 0.114 
f - 330 cps 

Afa****** 

V\/^v\« 

Rc ■ 8.4 x 106 

»c ■ 8.4 x  I 
x/c ■ 0.129 x/c - 0.157 

f - 320 cps f  * 310 cpt 

1Ü6 

WVW^MA/1 

Rc  -   11.5  x   10* 
x/c  -  a. 157 

f  * 445 cp« 

FICURi   U' 

Rc -   14.2  x   106 

x/c - 0.114 
i  * 750 cps 

'■' V« it    ■C > 

^VVMAAAA^ 

'i^' 

tc  -   16,4 x   lüfe 

x/e " 0.114 
f * Ö5ü cps 

TOLLMIOI-SCHUCjmNC  BOUKOARY  LAYER OSCILUTIONS, 
HO APPLIgD  SUCTION.   MO AFPL1E0 SOUND,   y •  0.018   INCH 

- i i 



0.15 

0.10 

tär«>*/Ua 

0.05 

0 
100 20U 

Fiat Plate (Brown) 
(Reference 6 ) 

Accelerated Flow 
y (Estimated) 

\. 

400       60V    800    1000 2000 4000     6000  8000   lu.JUO 

FIGURE   L2o      NONSUCTI0N AMPLIFIED OSCILLATION FREQUENCY DEFENDE«iCE 

i 



Jt/C  ■ O.i&b x/c " 0.554 x/c ■ 0.396 

*/K  * C.663 ->/c  ■  0- 74« 

CHORDtflSE WTT  W«  TRAVERSE,   SPL -   105  D3,   f   --   7m CPS. 

^ «  14.2 »   106,   y • 0.073  INCH 



t 

x/c - 0.4*S K/c - 0,554 K/c • 0.596 

K/C - O.ftil x/e - 0.W3 K/C - 0.7« 

I 

?mm£  no   cacKMiti MOT w« TUVKMI. WI. ■ no oe. f - 24« CPS, 

^ • U.J K 10*. y • 0.073 UK» 

33^- 



»/c • 0.465 
«/c • 0.507 

»/c   •  O.1,^ 

«/c ■ O.bth 
*/t • 0.621 

«C  •   U.2  »   10»,   y .  0.07J   IMCH 



e Run  158,  CQ «   1.51  x  l(r 

FIGURt    li-J      CHORDVISE SUCTION  ÜlSTRlBUHON 

I 

■J4- 



S 105 db 
t 110 db 
7 113 db 

120 db 

r 

40 r"* 

30 

20 

10 
— 120 db 

- 115 db 

j- 110 c 
j-  105 ( 

db 
ib 

0.3 

7" 

''^ 

0.4 0.5 0.6 

X/C 

0.7 O.ö 0.9 

FIGURE BOUNDARY  UYEA   FLUCTUATIONS  AT VAKlOJS  CHORD  LOCATIONS, 

f  =   248  CPS,   Rc  =   14.2 x   106,   i RtJBE AT y  ---  U.Ü7J   INCH 



24S cps 

^crlt»10 

40 

20 

324.5 cpt 

o d 
^o 

o >-^ 
0 

öd 

40r 

(S1>ertt « W4 

377 e?» 430 cp« 

(El) 
Ü erit 

JLiM 
4SI cpt 

ml 

0* 

0 i 

20 ftk 0 

^c 
1 

-« jd 

0 

40 

20 

373 cp« d 

o 

40f 

<^)crlt « 104 

ISO/300 cp« 

0.9 

300/600 cr- 

F1CW1  134     nilMIAL SOUND LEV«. TO CAUSE muSITlOH AS A 

rwcnoM or caoto, R« . IA.2 « IO^ 

0.9 

2AJ2 



x/c ■ 0.359 
x/c ■ 0.375 
X/C e 0.555 
x/c = 70.2 
x/c « 74.4 
x/c « 74.8 
x/c ■ 85.2 

40 

30 

20 

10 

Ck 
^ 

P 

200 400 600 

f, cp» 

7 o 

4 

150/300 300/600 600/1200 

FlGURc EXTERNAL SOUND LcVEL TO CAUSE TRANSITION  AT VARIOUS 
CHÜRDWISE  STATIONS  AS  A  FUNCTION OF  FREQUENCE, 

Re  =   14.2  x   IU6 

I 



I 
384 ept 

^crit x 10 

565 cpt 

t 

^crit « W4 

693.5 cp« 
40 

20 

775 cpf 

(8;>crlt « 10* 
2d 

663 ept 

\\\ 

^ V 
0 0.1 0.2 0.3 

x/c 

1005 ept 

I 
riCUU   136     KTIWIAL SOUND LIVH. TO CAUSE TRAMSITIO« AS A PUMCTION OP 

CHORDWSl lOCATIOK OF TUAMSITIOM.  Re - U.2 x 10« 

•344- 



x/c 
x/c 
x/c 
x/c 
x/c 

0.161 
0.184 
0.22S 
0.250 
1.000 

40 

5 

^crlt x 10 

30 

4 

20 

10 

1000 

FICURS   137     EXTERMAL SOÜII0 LBVEL TO CAUSE TRAHSITIOH AS A FUMCTION 
OP FREQUEIICY,  R«. - 14,2 « 106 

-343- 



M/S <■ 0.092 x/e ■ 0.121 x/c - 0.156 

«/c - 0.1M x/c - 0.24« »/c  ■  U,28t 

ri«UR«    I»    CMMtOVIU HOT  VIU  TKAVCRU.   »L -  120 DB,   f •   77^ cPi. 
»e ■ 14.2 x 10*. y • 0.044 INCH 

346- 



■LK' 

~ z ?c — 

~   33   ^ 

r- z c 

r   — 'X   -T3 
ro - re 

3: ui O O 
n: z —j 
H   w >   Q 
s: 3: r- C 
m pa 
r
1
: •-) "n ^• 

2: c o -^ "C ^ 3: 

§' 
c:
 ^: no H- - ^ 

>  O 3C   x 

O  U 3:   H 

73 

■x   ^   ~i  ^ 

— C7 v/i 

5 ^  ^ ? 
n N3 -< r- 
rn ^J z 
^ „ ^ '

x 

^> r: 
"X  i> ■?: 
Z   -C — 

-j n ^ 
O  "T3 O 
:i r, x 

5 <- 



■p^e- 

30 c '/■' 
O C\ C: 
2 > — 

O  -C  r: 
o ?3    .■ -a 

^ -O r*' 

J> -1 

~c "T| 
TJ 

^ —< 
'   'l 

t) -Tj r— 
7; 

a: 
PC 
n 

— ■—1 
V*J ^— 
Q 5C £ 
-7 VJ 
cr r

1
^ 

:.o ■.'; 

'— 
r- '.~ 

~   PO 

r. 
—i 

% 



(J IM -—x   10 

LUNGITl'DIN'AL  TkA.'.SblJ LK 
LOW  SUCriUN   -RUN   12'J) 

SPL (DB 

X No SOUR 

o 115 

A 120 

Q 125 
^7 130 
Ci 131 
A 132 

-H- 

■ l- 

,06 A^*  l^o 

v,    iru hf 

i H'   Fl.t ( rL'ArinNS  nl   4 )''   vHOKD 
'.t:   i:N!>KP   .'lir,   \\V\ I'KNCK  (>F   SCK'NiJ 



n 
•1 

H 

c 
s 

S 
8 

S 
a 
8 
C < 

i 

P ? ? 9 3 3 

S 8 8 ■^ e
1
 w« 

• « « 

P- 

3 
o    o    o I       I       I 
*■♦■*' 

i
5 

-o
o
xr •v. v.      ■x, 

^ xTi
1 

8 i ä ■ 1    ( 

C  8 



I 
It 
1 

(a 

n 

5 

S 

X 

C 

o c 

c 
— 

r
~7

:
 ^  . 

— 

'H1 —-i— - > ♦     *-    *     * 

K : Y j 

+          ..          *.         -*- v -      • 

:       ^ 
J 

j 

f f ?     f 3 3 3 3 

« « •c 
• • 

M 

n 
££ 

• ■ » 1 

^- — — — 

r 
*■ w •M 
■« »J ►J 

K K H •> 

r> s o c 

• *• » • 
«■ 

^ 
n n 

N. ^^ •^ Vfc 

n n n O 
c /> r- r •— i— *— « « <£> •*> w *- W *v 

i ■ 1 ■ 

c 



c 
I 

n 

S 
E 

S 
5 
o 

I 

8 

i 

4 

? P f P 3 9 3 3 
M Kl M M 
p» »w ^ p" 
*■ W •- K) 

n fi r> rs 
o -o £> -o 

• ■ • ■ 
^* ^- •— »^ • • ■ • 

U> M M »- 

K H M K 

< 

M 

O 

( • 
e         > 

• 
4                   4 

■>              C 
• 

>                   9 

c • 
a 

• 
>              c 

• 

o 
^ 

1 
I 

o 4 
I i 

1               I 

o < ~^ 

^ 

o 

H                     —1 

s A 

, 

• ^.".,..   : 
3 

} i     .   . i 1 I  i 

o   o    o    o «III 

n   n    o   o C C O    /O 
^    V.     X.     "N. 
n   o    o   r, 

-c -c o   -c- 
M K< M      K) 

> W —       »v 

I        I I f 

w   »r    o    c w     O      w. 

O 



r. 
■ 

\ 

5 

i 

8 8 

«r-^ 

A. 

? f F P P 3 3 3 9 9 

O Q « O «P 
M o <e w • 

on one jc   o -o   r>  xi 
■    i ■    ■    ■ 

^     V V     W     W 
<•       » »-      W       N> 

I« o   o    o   o   o 

at 
in 

»-4 

i 
5 
3 

/T xT o
n
 .T ^ •s.       ■«v >*.       •<        >, 

n   ri    n   r>   n 

S § i 2 i 

5 8   S 2  8 

5 

o 

■ 

w 
R 

o 



t n 

i 

I 

? ? p ass 

« «    « >i »      M 
• •       • 

£ S # 
■ i   ■ 

t  t 
M       K      M 

Q     O    O 
'        i      i 

« 

I 

H 

r>    rs    n 
^ ^  ^ 

<«   «    <« •^      *       M 

til 

n    n 
-o    JO 

5  8 

i 



c 

5 

s o 

r- 

o ftr^' 

5 r. 

in 
.•^ 
O 

(A 

M     m 

o    o 

s H 
K 

r 
w 
O 
s 

i 

o 

n    n X>     JO 

t 

Ut     o 



-•-iC <,  - 

A 
•1 

5 
3 

H 

O 

3     3      3     3     3     3      3 

« 8 8 f 5 I: fi 

■   ■•■ii   ■ 

is « k k » s k H      M       K      K      H      •>        H 

o   o   o   o   o   o    o t      1      1      I     1       ■       1 

•»      V    ~.     «»      >.      -s.       %. 
p   o   o   o   o   n    n /O £i   /o   o   a   JO    £> ******    »*    »*    K>    ly 

o  «   5   ••   <x   (  to 

^-      M      ►"     O      O      •- 
*    -J     W»    <«    -j     o 8 



sc- 

< 



1 

• 



-6ce- 



■09t' 



n 

% 

"5 O 

pi ri 
f- 

< «5 

a» 

O •A 

55 

5E 

< 

3 3 3 

)M *^ Ki 
«" U! »s! 
09 •-* QB 

o o o 

r» f» or 

#> n 8 

4 

< 

r c 

3 
n 
Pi 

c 

o 



-rur- 

c 

o 
o 

o o 

o 
X) 

CO        >. 

M 

o 

i 
.]!►   .) 

■ 

*>   ZB  * 
t 

c c c i 

S   3  3 S 

i 
^-   »- v« £. 

ee a» 
U   K) 
•   »   z 

0 1 

oTo^^ t «r 
» > t - 
n  if ft 

rt 
W >- >-. 

sss f 

n  n 
T3 T: s tn   en 



n 

N> 

n 

n 

c 

On 

c 
H    ? 
"1 
O PC 
n 
8 3 
> 

O 

z 

5 P SO 

H 
^■< 

O 
a: 

o 
9> 

Vi 

c n 
H —i 

O 
z 

I r 
5 

z 

> 
."3 

r 
o 

o o • o o 
09 fo 

v. 
n 

n> (9 

3   3   3   3 
N' »> ^' 
9> 9> C> 
s^i a» vi 
•  «  • 

^ W M 
W  KJ  »- 

90 OP 0» 

» » • r» r» n 

z 
0 

< 
cr 

K* »- ►- 

ft   O   rt 
■O "O tl 
• • » 

3 ft 

s 



■~9Z- 

n 

o 
a 

n 

JO 
a 

e 

5g    5 CO 4 

IS ;3 

si F w 

■ > 

M 

O   M 
0>^ 

90 

M 
"s. 
O 

3  9  9 

00 QD <C 

U M O 
00   •    < 

n so 
•o o 

o •o 
01 

{ 



n 

a 

o 

n 

IS» 

o 
c 

1^- 

3 
n 
s 
O    PI 

o 

> z 

< 

o 

=6 
n 

W5 
SB 

o Z    (A 
-      C 

rt 1-4 

r 

& 3 

z 
5? 

jo 

o 

' j CO 
30 ^ ?! » ?; ?o 
cc c cc c 
3   3 3 3   3 3 

►— ►- »— t—• ^- hj 
"si  00 ^j vj  ^ N> 
CD  O >J «O  ^ 00 

^ W W N> N) Z 
O« U> K> ^ O 0 

93 9) M 00 99 
< 

»  »   »  »   B   ^ 
r» r» ft  r» rr CT 

1 
K> KJ W ►- ►- » 
Sis r- vo vO r» 

O O C O ►* 
0 

o n o n n 3 
■o •o -o "O "O «    »    W    CB    0» 



Cr^C, 

1.0        1.2 
IM dr«g 
1.4 1.6 

Aoolied Dfturbroicc 

E«t. Snd.t  150/300 cp«,  125 db. u'/U, ■ 16K10"4 
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for Ext. *nd Int.  Sound a« above) 
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CQ x 10 

I 
FIGURE   158      SUCTION REQUIREMENTS FOR LAMIJIAR FLOW WITH VARIOUS 

COMBINATIONS OF EXTERNAL SOUND,   INTERNAL SOUND hHD 

VIBRATION,   Rc •  18.9 x 106 
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MOMENTUM THICKNESS 5 AT THE RAKE POSITION 
WITH TOTAL SUCTION FLOW COEFFICIENT C 
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FIGURE 212 
VARIATION OF EXPERIMENTAL AND COMPUTED SHAPE PARAffETER fl AT 
THE RAKE POSITION WITH TOTAL SUCTION FLO'.-r COEFFICIENT C^ 
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FIGURE  213 
VARIATION  OF  OCPKRlMtNTAL AND COMPUTED 
K.   /    "RT"  AT  THE  RAKE PDSITIO» WITH  TOTAL 
SUCTION' FLOW ::OEFFICIENT CQ( 
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FIGURE 214 
VARUTION OF EXPERIMENTAL AND COMPUTED 
C^ /ST 4T QIC HAKE POSITION HITH TOTAL 

mmmm 

FLOW COSFFICIEMT C 
Qt 
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FIGURE 215 
VARIATION OP CENTER OP GRAVITY POSITION OF SUCTION INFLOW VELOCITY DISTRI- 
BUTION WITH LENCTh REYNOLDS NUMBER RL AND TOTAL SUCTION FLOW COEFFICIENT CQt 
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